Multiply. Change mixed numbers to improper fractions first. Cross-cancel if possible. Simplify all answers.

1)
$$3\frac{1}{3} * 3\frac{1}{5}$$

2)
$$4\frac{3}{4} * 2\frac{4}{5}$$

3)
$$3\frac{1}{5} * 3\frac{1}{2}$$

4)
$$2\frac{1}{4} * 4\frac{1}{3}$$

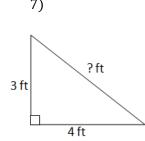
Probability

5)

If event M can occur in m ways and is followed by event N that can occur in n ways, then the event M followed by N can occur in $m \times n$ ways. This is called the **Fundamental Counting Principle**.

Use the Fundamental Counting Principal to find the total number of outcomes in each situation. Show your work.

a) rolling two 6-sided number cubes _____


b) tossing 3 coins _____

c) picking one consonant and one vowel from the alphabet _____

Geometry

For each shape, find the **perimeter** or **circumference**. Show all work. Use 3 for π .

Formula: __

Perimeter:

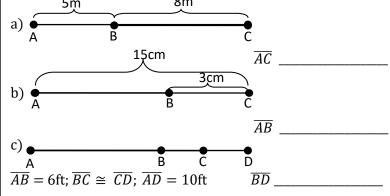
Factoring

Find the prime factors, and then write all factor pairs for each number.

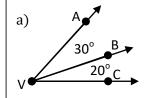
Prime factorization

factor pairs

8) 193



9) **194**



Current Problem Sets

10) For each diagram, find the length of the missing segment. Show your work.

11) For the diagrams, find the measurement of the angles requested. Show your work as needed.

b)

 $m \not = AVB = \underline{\hspace{1cm}}$

m∆BVC = _____

m₄AVC = _____

 $m \not \Delta DVE = 100^o$

 $m \not = DVF = \underline{\hspace{2cm}}$ (hint: a straight line)

m≰EVF = _____

Multiply. Change mixed numbers to improper fractions first. Cross-cancel if possible. Simplify all answers.

1)
$$4\frac{1}{3} * 4\frac{1}{2}$$

2)
$$3\frac{1}{10} * 2\frac{4}{5}$$

3)
$$4\frac{2}{3} * 3\frac{9}{10}$$

4)
$$2\frac{1}{2} * 3\frac{1}{10}$$

Probability

5)

If event M can occur in m ways and is followed by event N that can occur in n ways, then the event M followed by N can occur in $m \times n$ ways. This is called the **Fundamental Counting Principle**.

Use the Fundamental Counting Principal to find the total number of outcomes in each situation. Show your work.

a) choosing one of 3 processor speeds, 2 sizes of memory, and 4 sizes of hard drive ______

b) choosing a 4-, 6-, or 8-cylinderengine and 2- or 4-wheel drive _____

c) rolling 2 number cubes and tossing 2 coins _____

Geometry

For each shape, find the **perimeter** or **circumference**. Show all work.

1011...

Formula:

7)

15 ft ? ft

9 ft

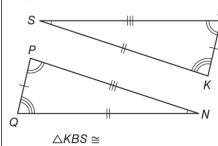
Factoring

Find the prime factors, and then write all factor pairs for each number.

Prime factorization

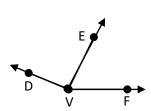
factor pairs

10) 195



11) **196**

Current Problem Sets


12) Complete the congruence statements.

$$4S \cong \underline{\qquad} \overline{KB} \cong \underline{\qquad}$$

13) For the diagram, find the measurement of the angle requested. Show your work as needed.

Perimeter:

 $m \not \Delta DVF = 160^{\circ}$

 $m \angle DVE = 85^{\circ}$

m≰EVF = _____

Complete each congruence statement if $\triangle MRU \cong \triangle ACF$.

$$\overline{CA} \cong \underline{\hspace{1cm}}$$

$$\overline{MU}\cong$$

∠A ≅ ____

2 -D Geometry Unit 8

Fractions

Multiply. Change mixed numbers to improper fractions first. Cross-cancel if possible. Simplify all answers.

1)
$$2\frac{1}{2} * 4\frac{2}{3}$$

2)
$$2\frac{1}{4} * 3\frac{1}{5}$$

3)
$$2\frac{7}{10} * 3\frac{1}{5}$$

4)
$$3\frac{3}{4} * 2\frac{4}{5}$$

Probability

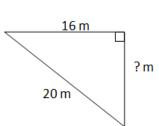
5)

If event M can occur in m ways and is followed by event N that can occur in n ways, then the event M followed by N can occur in $m \times n$ ways. This is called the **Fundamental Counting Principle**.

Use the Fundamental Counting Principal to find the total number of outcomes in each situation. Show your work.

a) picking from 3 theme parks and 1-day, 2-day, 3-day, and 5-day passes _________

- b) tossing 3 coins and rolling 2 number cubes _____
- c) choosing a meat and cheese sandwich from the list shown _____


Cheese	Meat
Provolone	Salami
Swiss	Turkey
American	Tuna
Cheddar	Ham

Geometry

For each shape, find the **perimeter** or **circumference**. Show all work.

18 m

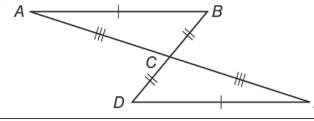
Formula: _____

Perimeter:

Factoring

Find the prime factors, and then write all factor pairs for each number.

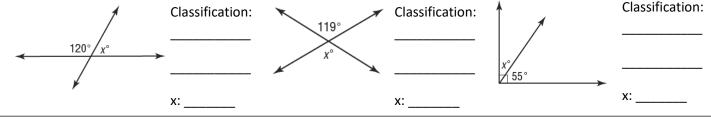
Prime factorization


factor pairs

- 8) **197**
- 0) 100

9) 198 _____

Current Problem Sets


10) Complete the congruence statements.

$$\overline{AB}\cong$$
 ______ $\overline{BC}\cong$ ______ $\overline{CA}\cong$ _____

△*ACB* ≅ _____

 $11) \ Classify \ the \ pairs \ of \ angles \ shown \ as \ complementary, \ supplementary \ or \ vertical. \ Then \ find \ the \ value \ of \ x.$

Multiply. Change mixed numbers to improper fractions first. Cross-cancel if possible. Simplify all answers.

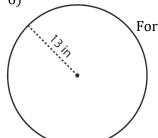
1)
$$4\frac{1}{2} * 3\frac{3}{5}$$

2)
$$2\frac{1}{2} * 2\frac{9}{10}$$

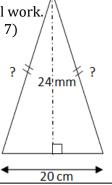
3)
$$3\frac{1}{5} * 2\frac{5}{8}$$

4)
$$3\frac{1}{2} * 2\frac{2}{5}$$

Probability


5) Suppose we survey all of the students at PLD and ask them how they get to school and also what grade they are in. The chart shows the results. Suppose we randomly select one student. (Represent all probabilities as simplified fractions and percents.)

Commute to School (Two-Way Table)				
	Bus	Walk	Car	Other
9th/10th Grade	106	30	70	4
11th/12th Grade	41	58	184	7


- a) P(9th/10th gr.) = _____ = ____ b) P(walker **and** 11th/12th gr.) = _____ = ____
- c) P(not a bus rider) = _____ = ____ d) P(walker **or** 11th/12th gr.) = ____ = ____

Geometry

For each shape, find the **perimeter** or **circumference**. Show all work.

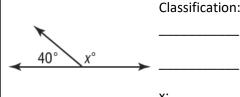
Formula:

Perimeter:

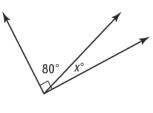
Factoring

Find the prime factors, and then write all factor pairs for each number.

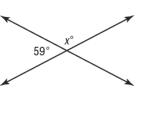
Prime factorization


factor pairs

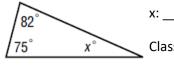
- 8) 199


- 9) 200

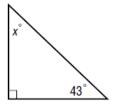
Current Problem Sets


10) Classify the pairs of angles shown as complementary, supplementary or vertical. Then find the value of x.

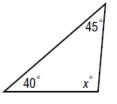
x: _____



Classification: 🔪 x: ____



Classification:


11) Find the missing measure in each triangle. Then classify the triangle as acute, right or obtuse.

Classification:

Classification:

Classification:

x: _____

Divide. Convert to a multiplication problem. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{8}{9} \div 4$$

2)
$$\frac{1}{3} \div \frac{2}{9}$$

3)
$$\frac{6}{7} \div \frac{2}{3}$$

4)
$$\frac{13}{15} \div \frac{13}{18}$$

Probability

5) The table shows the counts of earned degrees for several colleges on the East Coast. The level of degree and the gender of the degree recipient were tracked. (Represent all probabilities as simplified fractions and percents.)

	Bachelor's	Master's	Professional	Doctorate	Total
Female	542	128	26	18	714
Male	438	165	38	20	661
Total	980	293	64	38	1375

- a) What is the probability that a randomly selected degree recipient is a female? _____ = ____
- b) What is the probability that a randomly selected degree recipient earned a Doctorate?
- c) What is the probability that a randomly selected degree recipient is a woman, given that they received a Master's Degree?
- d) For a randomly selected degree recipient, what is the P(Bachelor's Degree and Male)? _____ = ____

Geometry

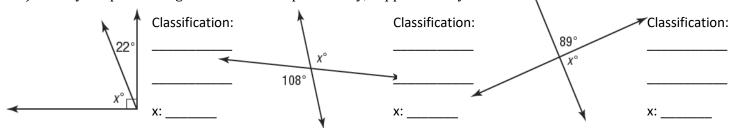
For each shape, find the **perimeter** or **circumference**. Show all work.

Formula:

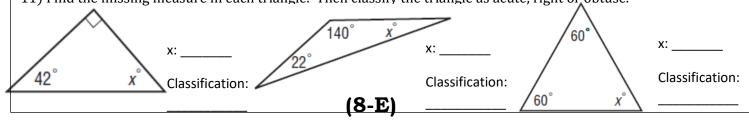
Perimeter:

Factoring

Find the prime factors, and then write all factor pairs for each number.


Prime factorization factor pairs

8) 201 _____


9) 202

Current Problem Sets

10) Classify the pairs of angles shown as complementary, supplementary or vertical. Then find the value of x.

11) Find the missing measure in each triangle. Then classify the triangle as acute, right or obtuse.

Divide. Convert to a multiplication problem. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{4}{7} \div 2$$

2)
$$\frac{4}{5} \div \frac{7}{10}$$

3)
$$\frac{3}{7} \div \frac{9}{14}$$

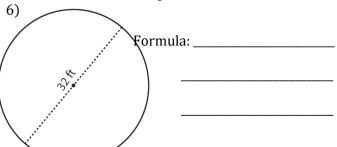
7)

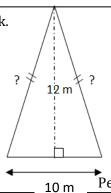
4)
$$\frac{5}{8} \div \frac{5}{12}$$

Probability

5) Animals on the endangered species list are given in the table by type of animal and whether it is domestic or foreign to the United States.

Endangered Animals (Two-Way Table)


	Mammals	Birds	Reptiles	Amphibians
U.S.	63	78	14	10
Foreign	251	175	64	8


- a) What is the probability that a randomly selected animal is a bird found in the US? _____ = ____
- b) What is the probability that a randomly selected animal is not a reptile? _____ = ____
- c) What is the probability that a randomly selected animal is a mammal, given that they are found in the US?
- d) What is the probability that a randomly selected animal is found in the US, given that they are a bird?

____=

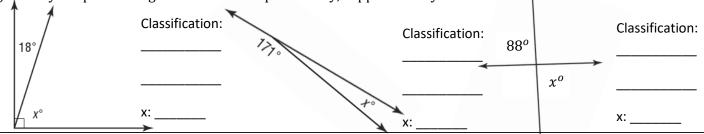
Geometry

For each shape, find the $\mbox{\bf perimeter}$ or $\mbox{\bf circumference.}$ Show all work.

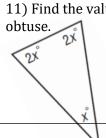
Perimeter:

Factoring

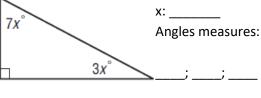
Find the prime factors, and then write all factor pairs for each number.

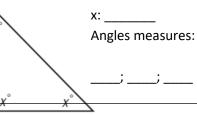

Prime factorization factor

8) 203


9) 204

Current Problem Sets


10) Classify the pairs of angles shown as complementary, supplementary or vertical.. Then find the value of x.



11) Find the value of x. Find the each angle measure in each triangle. Then classify the triangle as acute, right or

x: _____ Angles measures:

Divide. Convert to a multiplication problem. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{2}{3} \div 8$$

2)
$$\frac{7}{10} \div \frac{4}{5}$$

3)
$$\frac{7}{8} \div \frac{35}{2}$$

4)
$$\frac{2}{3} \div \frac{14}{9}$$

Probability

5) Fifty people were surveyed and asked their preference of a leisure activity. The results are displayed in a two-way table. (Represent all probabilities as simplified fractions and percents.)

a) What is the probability that a randomly selected adult prefers

 Dance
 Sports
 TV
 Total

 Male
 2
 10
 8
 20

 Female
 16
 6
 8
 30

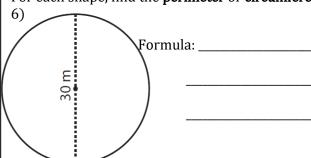
 Total
 18
 16
 16
 50

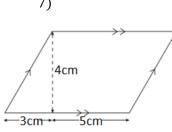
Leisure Activities (Two-Way Table)

a) What is the probability that a randomly selected adult prefers sports? _____ = ____

sports: ______ = ____

b) What is the probability that a randomly selected adult is female and prefers to dance?


c) What is the probability that a randomly selected adult is male, given that they prefer dancing?


d) What is the probability that a randomly selected adult prefers sports, given that they are male?

=

Geometry

For each shape, find the **perimeter** or **circumference**. Show all work.

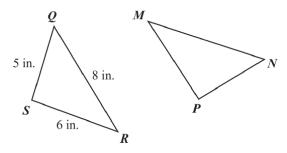
Perimeter:

Factoring

Find the prime factors, and then write all factor pairs for each number.

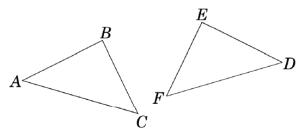
Prime factorization

factor pairs


8) 205

-

9) **206**


Current Problem Sets

10) In the diagram below, $\triangle QRS \cong \triangle NMP$.

What is the length, in inches, of \overline{MP} ?

11) $\triangle ABC \cong \triangle DEF$ with a right angle at B and $\angle C = 42^{\circ}$.

What is the measure of $\angle D$?

Divide. Convert to a multiplication problem. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{5}{12} \div 20$$

2)
$$\frac{5}{6} \div \frac{20}{9}$$

3)
$$\frac{2}{3} \div \frac{4}{9}$$

4)
$$\frac{13}{18} \div \frac{13}{6}$$

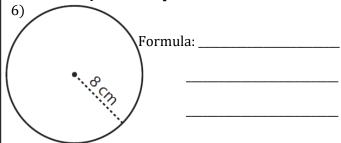
Probability

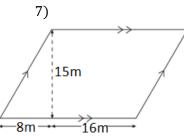
- 5) Answer each probability question. Probabilities should be expressed as simplified fractions and whole percents.
 - a) A letter is chosen at random from the word MATHEMATICS

P(E) = _____ P(not E) = ____ P(before letter I and vowel) = ____ P(before letter I or vowel) = ____

Six red marbles and 4 green marbles are in a box. You choose a marble, replace it, and then choose another.

P(red, red) = _____


P(red, white) = _____


P(green, green) = ______

P(red, green) = ______

Geometry

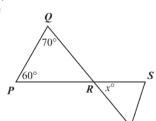
For each shape, find the **perimeter** or **circumference**. Show all work.

Perimeter:

Factoring

Find the prime factors, and then write all factor pairs for each number.

Prime factorization

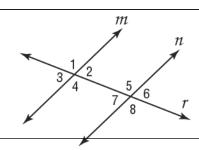

factor pairs

8) 207

9) 208

Current Problem Sets

10) Triangle PQR, triangle RST, and two angle measures are shown


Line segment QT intersects line segment PS at point R.

What is the value of x?

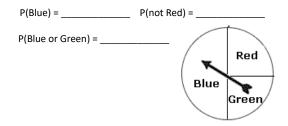
11) In the figure at the right, $m \parallel n$ and r is a transversal. If $m \angle 2 = 45^{\circ}$, find the measure of each angle.

<u>41_____</u> 43____ 47____ 45____

<u>44 ____</u> <u>46 ___</u> <u>48 ___</u>

Divide. Change mixed numbers to improper fractions, then convert to a multiplication problem. (Cross-cancel)

1)
$$3\frac{3}{5} \div 4\frac{1}{2}$$


2)
$$2\frac{1}{2} \div 2\frac{9}{10}$$

3)
$$4\frac{1}{4} \div 4\frac{3}{10}$$

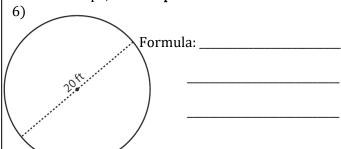
Probability

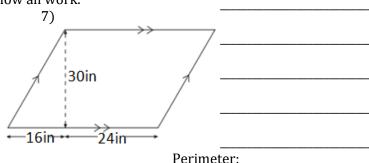
4) Answer each probability question. Probabilities should be expressed as simplified fractions and whole percents.

a) A dart is randomly thrown at the dart board.

b) Six red marbles and 4 green marbles are in a box. You choose a marble, do **NOT** replace it, and then choose another.

P(red, then red) = ______


P(red, then white) = ______


P(red, then green) =

P(green, then green) = _____

Geometry

For each shape, find the **perimeter** or **circumference**. Show all work.

Factoring

Find the prime factors, and then write all factor pairs for each number.

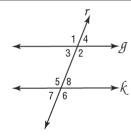
Prime factorization

factor pairs

8) 209

9) 210

Current Problem Sets


10) In the figure at the right, $g \parallel k$ and r is a transversal. If $m \angle 7 = 60^{\circ}$, find the measure of each angle.

41_____ 43____ 42____ 45____

 44 _____

 46 _____

 48 _____

11) Refer to the diagram in #10. For each pair of angles, state whether they are corresponding (C), alternate interior (I), alternate exterior (E), vertical (V), or supplementary (S) angles.

∡1 and ∡2 _____

∡4 and ∡7

∡2 and ∡3

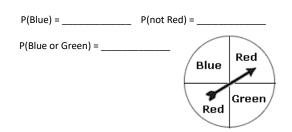
∡4 and ∡5

∡4 and ∡8 _____

∡7 and ∡3 _____

Divide. Change mixed numbers to improper fractions, then convert to a multiplication problem. (Cross-cancel)

1)
$$3\frac{7}{10} \div 3\frac{1}{2}$$


2)
$$3\frac{3}{4} \div 1\frac{2}{3}$$

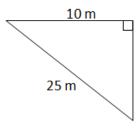
3)
$$1\frac{7}{9} \div 1\frac{2}{9}$$

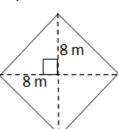
Probability

5) Answer each probability question. Probabilities should be expressed as simplified fractions and whole percents.

a) A dart is randomly thrown at the dart board.

b) Two red, 1 blue, and 3 green marbles are in a box. You choose a marble, do replace it, and then choose another.


> P(blue, then blue) = ______ P(red, then blue) = ______


P(blue, then red) =

P(green, then green) = _____

Geometry

For each shape, find the **perimeter**. Show all work. Round to the nearest tenth.

Perimeter:

Factoring

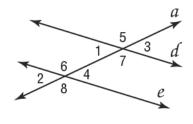
Find the prime factors, and then write all factor pairs for each number.

Perimeter:

Prime factorization

factor pairs

8) 211


9) 212

Current Problem Sets

10) In the figure at the right, $d \parallel e$ and a is a transversal. If $m \angle 5 = 143^{\circ}$, find the measure of each angle.

41____ 43___ 42___ 47___

44 <u>48 </u>

11) Refer to the diagram in #10. For each pair of angles, state whether they are corresponding (C), alternate interior (I), alternate exterior (E), vertical (V), or supplementary (S) angles.

∡1 and ∡2 _____

∡4 and ∡7

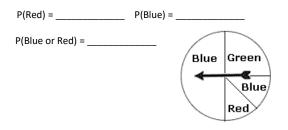
∡2 and ∡3

44 and 45 _____

∡4 and ∡8 _____

∡7 and ∡3 _____

Divide. Change mixed numbers to improper fractions, then convert to a multiplication problem. (Cross-cancel)


1)
$$3\frac{4}{5} \div 3\frac{7}{10}$$

2)
$$2\frac{1}{4} \div 1\frac{5}{8}$$

3)
$$3\frac{3}{4} \div 2\frac{1}{7}$$

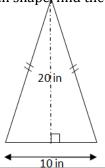
Probability

- 5) Answer each probability question. Probabilities should be expressed as simplified fractions and whole percents.
 - a) A dart is randomly thrown at the dart board.

b) Two red, 1 blue, and 3 green marbles are in a box. You choose a marble, do **NOT** replace it, and then choose another.

P(blue, then blue) = ______

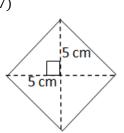
P(red, then blue) = _____


P(blue, then red) = _____

P(green, then green) =

<u>Geometry</u>

For each shape, find the perimeter. Show all work. Round to the nearest tenth.


6)

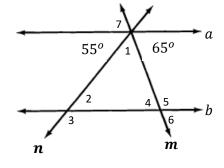
Perimeter:

Perimeter:

Factoring

Find the prime factors, and then write all factor pairs for each number.

<u>Prime factorization</u>


factor pairs

8) 213

9) **214**

Current Problem Sets

10) Parallel lines a and b when cut by transversals m and n. Find the unknown angle measures.

1 = _____

2 = _____

3 =

4 =

5 =

6 =

7 =

11) Refer to the diagram in #10. For each pair of angles, state whether they are corresponding (C), alternate interior (I), alternate exterior (E), vertical (V), or supplementary (S) angles.

55° and 42 _____

∡4 and ∡7 _____

∡2 and ∡3 _____

∡4 and ∡5 _____

∡4 and ∡6 _____

∡7 and ∡6 _____