Add. Simplify all answers.

1)
$$\frac{1}{7} + \frac{3}{7}$$

2)
$$\frac{1}{6} + \frac{1}{2}$$

3)
$$4\frac{1}{8} + 8\frac{11}{16}$$

2)
$$\frac{1}{6} + \frac{1}{2}$$
 3) $4\frac{1}{8} + 8\frac{11}{16}$ 4) $5\frac{7}{16} + 3\frac{1}{16}$

Probability

5) A spinner like the one shown is used in a game. Determine the theoretical probability of each outcome if the spinner is equally likely to land on each section. Express each theoretical probability as a fraction and as a percent.

a) P(10) =

c) P(greater than 7) = _____ = _ (fraction) d) P(prime #) = _____ (fraction)

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

Formula: _____

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization factor pairs

8) 173

9) 174

Current Problem Sets

10) Find the missing length of the right triangle. Round answers to the nearest tenth. A calculator can be used.

11) Find the distance between the two points. Round to the nearest tenth. A calculator may be used.

Add. Simplify all answers.

1)
$$4\frac{1}{2} + 6\frac{1}{3}$$

2)
$$4\frac{2}{5} + 8\frac{1}{2}$$

3)
$$2\frac{5}{14} + 5\frac{1}{7}$$

3)
$$2\frac{5}{14} + 5\frac{1}{7}$$
 4) $6\frac{11}{24} + 4\frac{1}{6}$

Probability

5) A spinner like the one shown is used in a game. Determine the theoretical probability of each outcome if the spinner is equally likely to land on each section. Express each theoretical probability as a fraction and as a percent.

a) P(1 or 2) = ____ = ____ = _____ (percent)

b) P(shaded) =(fraction)

c) P(less than 5) = _____ = ____ (fraction) = _____ (percent)

d) P(not shaded) = _ (fraction)

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

Formula:

Name: Formula:

Factoring

16 cm

Find the prime factors, and then write all factor pairs for each number.

prime factorization factor pairs

8) 175

9) 176

Current Problem Sets

10) Draw the lines of symmetry. State how many lines.

11) Reflect the figure over the x-axis.

Add. Simplify all answers.

1)
$$2\frac{2}{5} + 5\frac{1}{7}$$

2)
$$1\frac{3}{5} + 4\frac{3}{10}$$

3)
$$4\frac{2}{3} + 9\frac{2}{10}$$

3)
$$4\frac{2}{3} + 9\frac{2}{10}$$
 4) $3\frac{1}{3} + 5\frac{2}{9}$

Probability

5) The table shows the results of an experiment in which the spinner shown was spun 50 times. Find the experimental probability of each outcome as a fraction and as a percent.

a) P(less than 7)	=	=	

21

Number	Frequency	Number	Frequency
1	Ш	9	III
2	III	10	Ш
3	Ш	11	II
4	IIII	12	IIII
5	Ш	13	I
6	₩1	14	II
7	I	15	III
8	Ш	16	Ш

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

Formula: 14 cm Name: _____ Formula: _____

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

8) 177

9) 178

factor pairs

Current Problem Sets

10) Draw the lines of symmetry. State how many lines.

c)_

11) Reflect the figure over the y-axis.

Subtract. Simplify all answers.

1)
$$6\frac{1}{2} - 1\frac{1}{3}$$

2)
$$9\frac{1}{2} - 4\frac{1}{4}$$

3)
$$5\frac{3}{4} - 3\frac{1}{3}$$

3)
$$5\frac{3}{4} - 3\frac{1}{3}$$
 4) $5\frac{9}{10} - 2\frac{1}{2}$

Probability

5) The table shows the results of an experiment in which the spinner shown was spun 50 times. Find the experimental probability of each outcome as a fraction and as a percent.

27 16 7 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25

7)

6 cm

Number	Frequency	Number	Frequency
1	Ш	9	III
2	III	10	Ж
3	Ш	11	Ш
4	IIII	12	IIII
5	Ж	13	I
6	₩1	14	Ш
7	Ι	15	III
8	Ш	16	Ж

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

Formula:

Name: _____

Formula:

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

factor pairs

8) 179

9) 180

Current Problem Sets

10) Translate the figure 5 right and 2 up.

11) Reflect the figure over the x-axis.

Write a general rule for the transformation:

Subtract. Simplify all answers.

1)
$$5\frac{9}{10} - 2\frac{1}{2}$$

2)
$$6\frac{1}{3} - 3\frac{1}{5}$$

3)
$$7\frac{1}{2} - 3\frac{1}{5}$$

3)
$$7\frac{1}{2} - 3\frac{1}{5}$$
 4) $9\frac{2}{3} - 2\frac{1}{5}$

Probability

5) The table shows the students involved in community service. Suppose one student is randomly selected to represent the school at a state-wide awards ceremony. Find the probability of each event. Express your answer as a simplified fraction and round to a whole percent.

Community Service (Two-Way Table)

	6th Graders	7th Graders	8th Graders	
Girls	5	3	7	
Boys	15	5	5	

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π . 7)

12 in

Formula: _____

Name: _____

Formula:

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

factor pairs

8) 181

9) 182

Current Problem Sets

10) Translate the figure 4 left and 3 up.

11) Reflect the figure over the y-axis.

Write a general rule for the transformation:

Subtract. Simplify all answers.

1)
$$8\frac{1}{2} - 1\frac{1}{4}$$

2)
$$9\frac{1}{2} - 3\frac{1}{3}$$

3)
$$6\frac{7}{10} - 3\frac{1}{2}$$

3)
$$6\frac{7}{10} - 3\frac{1}{2}$$
 4) $9\frac{2}{3} - 2\frac{2}{5}$

Probability

5) The table shows the students involved in community service. Suppose one student is randomly selected to represent the school at a state-wide awards ceremony. Find the probability of each event. Express your answer as a simplified fraction and round to a whole percent.

Community Service (Two-Way Table)

	6th Graders	7th Graders	8th Graders
Girls	5	3	7
Boys	15	5	5

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

22 m

Formula:

Name: _____

Formula: _____ Ξ.

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

factor pairs

8) 183

9) 184

Current Problem Sets

10) For each figure state the order and the angle of rotation.

Order: ____

Order: _

Angle : _____

Angle : _____

11) Rotate the figure 180° about the origin.

Multiply. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{5}{3} * \frac{2}{5}$$

2)
$$\frac{3}{4} * \frac{8}{9}$$

3)
$$\frac{5}{2} * \frac{2}{7}$$

4)
$$\frac{7}{6} * \frac{9}{11}$$

Probability

5) For the situation, make a tree diagram and then identify the sample space. Then give the total number of outcomes.

Choosing an outfit from a green shirt, blue shirt, or a red shirt, and black pants or blue pants

Total number of outcomes: _____

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

Formula:

3 in

Name: _____

Formula:

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

factor pairs

8) 185

9) 186

Current Problem Sets

10) Rotate the figure 90° clockwise about the origin.

Write a general rule for the transformation: 11) Rotate the figure 90° counterclockwise about the origin.

Multiply. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{9}{2} * \frac{1}{18}$$

2)
$$\frac{8}{9} * \frac{3}{16}$$

3)
$$\frac{5}{12} * \frac{2}{15}$$

4)
$$\frac{9}{8} * \frac{14}{15}$$

Probability

5) For the situation, make a tree diagram and then identify the sample space. State the total number of outcomes.

Choosing a vowel from the word COUNT and a consonant from the word PRIME

Total number of outcomes: _____

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

36 ft

Formul

a:		 	 _
	 	 	 _

8 ft

Formula: ____ 12 ft

Name: _____

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

factor pairs

8) 187

9) 188

Current Problem Sets

10) Rotate the figure 90° counterclockwise about the origin.

Write a general rule for the transformation:

11) Reflect the figure over the x-axis.

Multiply. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{7}{27} * \frac{6}{7}$$

2)
$$\frac{8}{15} * \frac{15}{26}$$

3)
$$\frac{10}{27} * \frac{18}{25}$$

4)
$$\frac{33}{49} * \frac{7}{11}$$

Probability

5) For the situation, make a tree diagram and then identify the sample space. State the total number of outcomes.

Choosing a vowel from the word BEAUMONT and a consonant from the word COLTS

Total number of outcomes: _____

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

8,44

Name: ______Formula: _____

Name: ______
Formula: ____

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization factor pairs

8) 189

9) **190**

Current Problem Sets

10) Dilate the figure with a scale factor of 2 centered at the origin. ${\bf y}$

Write a general rule for the transformation:

11) Dilate the figure with a scale factor of $\frac{1}{4}$ centered at the origin.

Multiply. Cross-cancel if possible. Simplify all answers.

1)
$$\frac{24}{35} * \frac{7}{36}$$

2)
$$\frac{19}{40} * \frac{16}{19}$$

3)
$$\frac{11}{24} * \frac{16}{55}$$

4)
$$\frac{12}{13} * \frac{13}{18}$$

Probability

5) For the situation, make a tree diagram and then identify the sample space. State the total number of outcomes.

Soup	Salad	Sandwich
Tortellini	Caesar	Roast Beef
Lentil	Macaroni	Ham
		Turkey

Choosing a lunch consisting of a soup, salad, and sandwich from the menu shown in the table.

Total number of outcomes: _____

Geometry

For each shape, identify the figure (be specific as possible) and find the **area**. Show all formulas. Use 3 for π .

40 cm

Formula:

Name: ______
Formula: _____

Factoring

Find the prime factors, and then write all factor pairs for each number.

prime factorization

factor pairs

8) **191**

9) **192** __

Current Problem Sets

10) Translate the figure down 3 and to the left 1. Then reflect over the y-axis.

11) Dilate the figure with a scale factor of 3 centered at the origin.

