
Name: ____

Advanced Algebra I Operations with Rational Numbers and Understanding Irrational Numbers

Objectives

- Adding and subtracting integers
- Adding and subtracting rational numbers
- Combining like terms
- Multiplying and dividing integers
- Distributive property
- Multiplying and dividing rational numbers
- Order of operations and evaluating expressions
- Distributive property with combining like terms
- Approximating and graphing irrational #'s

Beaumont Middle School 8th Grade Adv Algebra I 2019-2020

Adding & Subtracting Integers

Rules for adding integers:

If the signs are the same:

If the signs are different: _____

Rule for subtracting integers:

Practice as notes			
Simplify.			
16 – (-2)	2. 5 + -3	3. 3 + -5	
42 + -3	5. 5 – (-1)	61 + 1	
7. 3 + -10	820 + 21	96 – 4	
10. 4 – (-3)	119 – (-6)	12. 5 – 12	
134 – 9		142 – 10 + (-4)	
15. 10 + (-6) – 15 – (-6)		162 - 6 + (-1) - (-3)	

Evaluate if a = 2, b = -6 and c = 10. Substitution must be shown as a separate step.

17. a – b + c 18. c – b – a 19. a – b – 2c

Objectives: The students will be able to solve problems by adding & subtracting integers.

Homework Simplify. 1. 4 – 50 _____ 2. -4 – (-72) _____ 3. -4 + -85 ____ 4. 3 – (-97) _____ 5. 60 – (-6) _____ 6. 5 – 86 _____ 7. 3 + 10 _____ 8. -20 + 20 _____ 9. -2 - 60 _____ 10. -6 – (-70) _____ 11. -7 – (-52) _____ 12. -8 + (-31) _____ 13. -12 – 13 + (-5) _____ 14. 16 + (-8) – 16 – (-3) _____ $15.28 - 3 + (-6) - (-14) _$ $16.-24 + 5 - (-5) - 6 + 15 _$ Evaluate if a = -2, b = 8, c = 10 and d = -10. Substitution must be shown as a separate step. 17. c + d 18. a – d 19. a – b 20. a + b 21. c – d 22. a + d 23. a – b + d 24. d – a + 2b 25. a + c + d 26. a - b + c - d27. a + c – d 28. a + b – 2c + d

Adding & Subtracting Rational Numbers (specifically fractions)

When adding or subtracting fractions, do NOT change mixed numbers to improper fractions. You MUST get a common denominator. Some of the fractions include negative numbers. Follow your integer rules.

Practice as notes

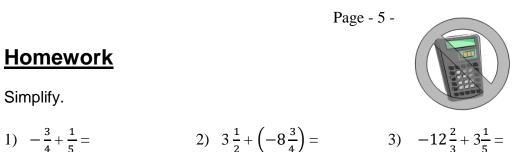
Simplify.

1) $\frac{3}{4} + \frac{1}{5} =$ 2) $7\frac{3}{4} - 2\frac{1}{2} =$

5) $-2\frac{3}{4} + \left(-\frac{2}{3}\right) = 6$) $4\frac{3}{4} + \left(-1\frac{1}{5}\right) = 7$) $-6\frac{2}{3} - \left(-3\frac{2}{5}\right) = 8$) $-10\frac{3}{5} - \left(-3\frac{3}{8}\right) = 6$

Evaluate if $a = 1\frac{7}{8}$, $b = -4\frac{1}{2}$ and $c = 5\frac{3}{4}$. Substitution must be shown as a separate step. 9. a - b + c10. c - b - a

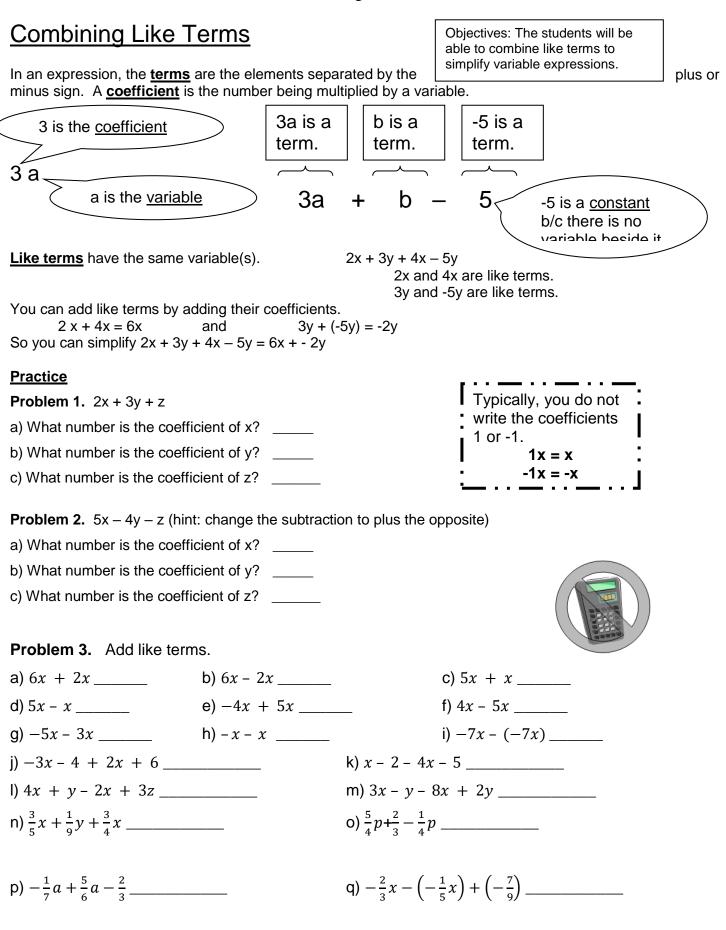
3) $\frac{2}{12} + \frac{3}{4} =$


Objectives: The students will be able to solve problems by adding & subtracting fractions.

4) $4\frac{3}{7} - 1\frac{3}{14} =$

Homework

Simplify.


4)
$$-\frac{6}{7}-\frac{3}{14}=$$

5) $1\frac{1}{10} - \left(-\frac{2}{5}\right) = 6$; $-2\frac{1}{2} - \left(-4\frac{5}{8}\right) = 7$; $-2\frac{2}{3} + \left(-1\frac{3}{4}\right) = 8$; $-\frac{6}{11} - \frac{3}{22} = 6$

9) $3\frac{5}{7} + \left(-2\frac{2}{3}\right) = 10$ $-5\frac{3}{8} - 4\frac{1}{6} = 11$ $-\frac{2}{3} + \left(-\frac{1}{4}\right) = 12$ $-3\frac{2}{3} - \left(-2\frac{1}{4}\right) = 12$

Evaluate if
$$a = -12\frac{3}{5}$$
, $b = 8\frac{1}{3}$, $c = -4\frac{7}{10}$, $d = 5\frac{5}{9}$, $e = -1\frac{4}{15}$
13. a + b 14. c - d 15. e + d

16. a – b + d 17. d – a + b 18. a + c + e

Page - 6 -

Page - 7 -Homework Identify how many terms are in each expression. 1) 2x + 3z - 5 _____ 2) 3*x* _____ 4) 10 + 6p - 5y + 4u _____ 3) 4*c* – 7*.g* _____ 5) 4*k* - 9 _____ 6) 5d + 8 - 6y + w _____ For each expression name the coefficient and the constant. 7) -4x + 5 Coefficient _____ Constant 8) 2y Coefficient _____ Constant _____ 9) **9***h* – **6** Coefficient _____ Constant _____ 10) **-3** Coefficient _____ Constant _____ Simplify. 11) 2x + 5y + 9x _____ 12) *a* + 9*b* + 6*a* _____ 14) $\frac{3}{4}x + z + \frac{1}{4}x$ _____ 13) 2p + 3q - 5p + 2q _____ 15) 3j + 4k - 2f + 6k_____ 16) 1.4h - 5 + 3h _____ 17) 4s + (-7t) - 2t + 3s18) 4u - 6 + (-10u) - 219) a + b - a + b _____ 20) 2 - 4w + 12w _____ 22) $\frac{9}{2}a + \left(-\frac{5}{4}a\right) - \frac{6}{7}b$ _____ 21) $x + \frac{3}{8}y - \frac{1}{2}y$ _____ 23) $\frac{7}{8}x - y - \left(-\frac{2}{3}x\right) + \frac{4}{9}$ 24) $-\frac{3}{10}w + \frac{2}{5}y - \frac{2}{5}w + \left(-\frac{2}{5}y\right)$ _____

Multiplying and Dividing Integers

If the signs are the same: _____

Rules	for	multiplying	&	dividina	integers:
		manupiying	~	arrang	integere.

Objectives: The students will be able to solve problems by multiplying and dividing integers.

-		
If the signs are different:		
Practice	Multiplication	answer is a product.
Simplify. Division answer is a quotie		ver is a quotient.
16 * (-2)	2. 5 * -3	3. 3 * -5
42 * -3	5. 5 ÷ (-1)	624 ÷ -3
7. 3 (-10)	8. $\frac{-36}{-9}$	96 • 4
102 * 10 * (-4)	11. 10 (-6) (-2) (5)	12. ⁵⁴
Distributive Property		Objectives: The students will be able to use the distributive property to simplify variable
According to the Distributive P	roperty you distribute or "pass	expressions.

According to the **Distributive Property**, you **distribute** or "pass out" a multiplication to each part of a sum or difference in parentheses.

In 2(a + 3) = 2a + 6, we "pass out" the 2 by multiplying it by both the *a* and the 3.

Multiply 6(x - 9)6(x) - 6(9)6x - 54 Multiply -3(h + 2)-3(h) + -3(2)-3h + -6

Algebraic

<u>Arithmetic</u>

Order of Operations Distributive property

7(6 – 4)	7(6 – 4)	-2(x+4)
<u>7(2)</u>	7(6) - 7(4)	-2(x) + -2(4)
7(2) 14	42 – 28	-2x + -8
	14	

Practice

Use the distributive property to simplify.

1. 4 (j+ 10)	2. – (4n – 6)
32 (- g – 4)	4. (4c + 2)3
5. 6 (-2 <i>p</i> + 7)	6. 5 (2r – 4)

Homework

Find each product or quotient.

1. 4 * (-12)	224 ÷(-6)	3. 8 (-6)
4. $\frac{-15}{5}$	54 • (-7)	612 ÷2
75 * 8	8. $\frac{-34}{-34}$	9. 7.(-6)
1025 ÷ 5	116 (-15)	12. ¹⁰ / ₋₂
137 * -3	14. 12 ÷ 2	15. 7 · -11
1680 ÷ (-8)	17. 30 * (-6)	18. <u>-50</u>
1910 * 2 * (-3)	2050 ÷10	* (-5)
Evaluate if w = -2, x = -1 21. wx 22. w		24. xy

Use the distributive property to simplify.

1. 3(x + 4)	27(t – 3)
32(y + 8)	4. – (-y + 3)
5. 8(-x + 7)	6. 11(4x + 3)
7. (x + 4)2	8. 3(-2b – 8)
93(1 – 2k)	10. (-2s + 9)6
Combine like terms to simplify.	
14. 6x + 3y + 6y – 2x	15. 18 + 7x – 12 – 7x
16. 10r + 100s + 50t	17. 3r + 4 – 5 – 2r
18. 12 + 2 + 3x – 12 – 5y + 7z – 10x	

Multiplying and Dividing Rational Numbers (specifically fractions)

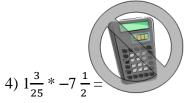
When multiplying fractions, you MUST change mixed numbers to improper fractions. You do NOT get a common denominator. Cross cancel if at all possible. Some of the fractions include negative numbers. Follow your integer rules.

Simplify. All answers should be in simplest form.

1) $\frac{3}{4} * \frac{1}{6} =$ 2) $-\frac{14}{5} * -\frac{5}{6} =$ 3) $2\frac{2}{9} * 1\frac{3}{4} =$

When dividing fractions, you MUST change mixed numbers to improper fractions <u>first</u>. Then change to multiplying by the reciprocal. ONLY then can you cross cancel.

Simplify. All answers should be in simplest form.


1) $\frac{6}{7} \div \frac{2}{3} =$ 2) $-\frac{5}{9} \div \frac{10}{3} =$ 3) $2\frac{5}{8} \div \frac{-3}{4} =$ 4) $-3\frac{3}{5} \div -2\frac{7}{10} =$

Distributive Property with Fractions

1. $\frac{1}{3}(6x+9) =$ 2. $\frac{1}{4}(8x-12) =$

3.
$$-\frac{1}{5}(5x-10) =$$
 4. $\frac{2}{3}(6x+9) =$

Objectives: The students will be able to solve problems by multiplying and dividing fractions.

Homework

Simplify. Show all work.

1) $\frac{7}{6} \cdot \frac{9}{14} =$ 2) $-6 \cdot \frac{2}{5} =$ 3) $-\frac{18}{5} \cdot \frac{25}{27} =$

4)
$$2\frac{1}{2} \cdot 6 =$$
 5) $8 \cdot 5\frac{1}{2} =$ 6) $(-6\frac{1}{4})(-2\frac{2}{5}) =$

7)
$$\frac{3}{7} \div \frac{1}{2} =$$
 8) $-\frac{7}{9} \div -\frac{21}{6} =$ 9) $-6\frac{1}{8} \div \frac{7}{9} =$

10)
$$\frac{3}{5} \div -1\frac{5}{7} =$$
 11) $1\frac{3}{4} \div 12\frac{1}{4} =$ 12) $-3\frac{1}{6} \div -\frac{1}{3} =$

13)
$$\frac{3}{2}(4x-2) =$$
 14) $-\frac{2}{5}(10x+15) =$

15)
$$\frac{3}{5}(5x-20) =$$
 16) $-\frac{3}{4}(8x-4) =$

Page - 12 -

Objectives: The students will be able to solve problems using order of operations.

Order of Operations

Jordan solved the problem 5 + 4 * 2 and got the answer of 18. David solved the same problem and got 13. Can both be correct? Is there only one correct order to perform operations? Who is correct?

Don't forget the different symbols for multiplication: 5*2 5(2) 5x2 5*2	5 + 4 * 2 9 * 2 18	5 + 4 * 2 5 + 8 13	tonget
P (Level 1)			
E(Level 2)			
D & M (Level 3)			
S & A(Level 4)			

Practice

Steps must be shown so that each line of work is equal to the line above.

1. 5 * 10 - 6 * -2 2. $24 \div -6 * 2$ 3. -3 - 5(7 - 5)

4.
$$18 - 5 * -3$$
 5. $\frac{9 + 7*5}{4}$ 6. $2 [9(-6 - 4)] + 4$

7.
$$30 - 2^3$$
 8. $3(8 - 14)^2$ 9. $25 - (2 + 2) * -3$

Objectives: The students will be able to evaluate expressions and solve problems by evaluating expressions.

We have learned that, in an algebraic expression, letters can stand for numbers. When we substitute a specific value for each <u>variable</u>, and then perform the operations, it's called <u>evaluating</u> the expression.

Evaluating a variable expression Example 1 Example 1		Example 2	Example 2			
Evaluate 18	+ 2g, for g = 3	3.	Evaluate 2a	$b - \frac{a}{3}$, for a = 3, b = 4, c =	= 9
18 + 2g	Replace the var	iable	2ab -	$-\frac{c}{3}$	Replace the variable	
18 + 2*3	Use the order o	f operations to solve.	2*3*4	$1 - \frac{9}{3}$	Use the order of operati	ons
18 + 6			24 – 3	3		
24			21			
Practice	ch expression		beside	a vari	hat a number able is 2a means 2 * a	
1. 63 – 5x, fo	or x = -7	2. 4(t + 3) + 1, for t	= 8 3.6(g	g + h)	, for g = -18 & h = 7	

4. 2xy - z, for x = 4, y = 3, and z = -1 5. $\frac{r+s}{2}$, for r = -13 and s = -11

6. Becky saves \$125 each year since her first birthday.
a. Write an expression for Becky's savings after 3 years. ______
b. Write an expression for Becky's savings after *y* years ______
c. When Becky is 14 years old, how much will she have saved? _______

Evaluating Expressions

HOMEWORK

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used for this assignment.

1. 50 – 4 • -5	2. (100 ÷ −5) − 6 • −3	3. 9 ² + 2(-8 – 4)
4. <u>16+8</u> 3+1	5. 3(4 – 6) ³	6. 2[-50 – 8(-2 + -3)]
7. 20 ÷ 4 * -5	8. 14 – 3(-20 – (-18))	954 ÷ 6 – 3 • 2
105 + 2(6-4)	11. $\frac{21+3}{8-6} - 3^2$	12. [10 – (4 – 1)] • -9
1348 ÷ 2 ³	14. 18 – 2(-8) ÷ 4	15. $\frac{5*10}{25}$ +4÷2
16. 7 + 2(-15 + 6)	17. 2[$-3 * 2^3 - 3(2 + 1)$]	18. $\frac{10+(8-3)^2}{20-5*3}$

HOMEWORK

Evaluate each expression.

1. xy, for x = 3 and y = -5 **2.** 18a - 9b, for a = -10 and b = -5

3. -24 – 5p, for p = -4 **4**. 850 – 2h, for h = -215

For #5 – 8, evaluate if
$$a = \frac{1}{2}$$
, $x = -4$, and $y = 2$.
5. $a(10 - x)$ 6. axy 7. $5x - 3y$ 8. $4x + 2(x + 3y)$

10. A tree grows 5 inches in a year.

a. Write an expression for the tree's height after x years.

b. When the tree is 36 years old, how tall will it be? _____

Evaluate each expression.

11. $\frac{ab}{2}$ +4*c*, for a = 6, b = 5, and c = -3 **12.** x(y + 5) - z, for x = 3, y = 2, and z = -7 Page - 16 -

Distributive Property with Combining Like Terms

We will complete one or two problems from each section for notes.

Use Distributive Property to simplify each expression.

Objectives: The students will be able to use the distributive property and combine like terms to simplify variable expressions.

- 1) 7(1-8n)2) -8(b+3)3) -6(9-9v)4) -(3x-9)5) -9(n+6)6) -10(a+2)
- 7) $(5k-10) \cdot -9$ 8) -4(4+3p)

Use Distributive Property AND Combining Like Terms to simplify each expression. problems.

- 9) -6(x+2)-2 10) 4n-(7-6n)
- 11) -3 7(-3 6v) 12) -5(a 6) + 2a

Use Distributive Property AND Combining Like terms to simplify each expression.

- 13) 7(5n-8) + 6(4+6n) 14) -(3a+2) 3(5a+7)
- 15) -5(1+2k) 8(-4+5k)16) 5(-3p+7) + 5(p-1)
- 17) -5(x+2) + 5(x-5)18) -4(1-8n) - 4(8n+4)

Use Distributive Property AND Combining Like terms to simplify each expression.

19)
$$9(m+8) + 11(3m+4)$$

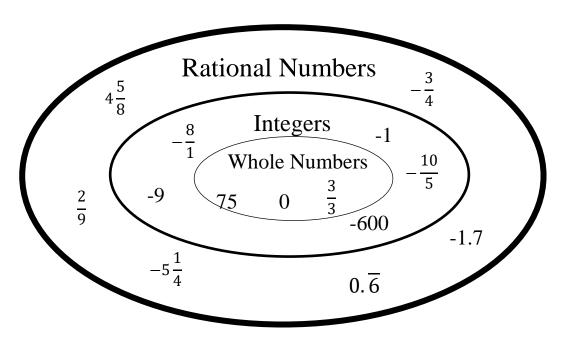
20) $11(8r+3) - 2(-9+6r)$
21) $7(-12x-3) + 10(6x+7)$
22) $-9(1-10n) - 2(3n+9)$

23)
$$\frac{1}{3}(9x - 12) - (-x + 7)$$
 24) $2(-f + 10) - \frac{3}{5}(10f - 5)$

$$25) \frac{-2}{9}(27x - 18) + \frac{5}{6}(12x + 36)$$

$$26) \frac{1}{8}(-16c + 64) - \frac{4}{7}(42c - 63)$$

$$27)\frac{-11}{5}(40r - 15) - \frac{2}{9}(-81 + 54r)$$


$$28) - \frac{9}{8}(8 - 80n) - \frac{2}{7}(21n + 63)$$

Rational Numbers

Numbers have different classifications. Some numbers can be classified in multiple ways. A **ratio**nal number is any number that

Objectives: I can identify types of rational numbers and express equivalent numbers for comparison.

you can write as a ratio, $\frac{a}{b}$ of two integers, where *b* is not zero. The diagram below shows relationships among rational numbers.

Always simplify numbers before classifying them. Every whole number is also an integer and a rational number. Every integer is also a rational number.

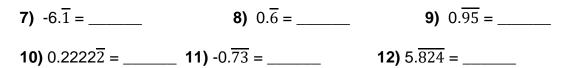
Practice

Identify the classification(s) for the following numbers by circling the classification(s) for each.

1) 5.8	Whole Number	Integer	Rational Number
2) 6	Whole Number	Integer	Rational Number
3) -10	Whole Number	Integer	Rational Number
4) 0. 6	Whole Number	Integer	Rational Number
5) $\frac{1}{2}$	Whole Number	Integer	Rational Number
6) $-\frac{2}{3}$	Whole Number	Integer	Rational Number

Express each of the fractions as decimals.

1) $\frac{1}{9} = $	2) $\frac{2}{9} = $	3) $\frac{3}{9} = $
4) $\frac{4}{9} = $	5) $\frac{5}{9} = $	6) $\frac{6}{9} = $
7) $\frac{7}{9} =$	$8)\frac{8}{9} = $	9) $\frac{9}{9} = $
10) What pattern is show	n when the denominator is 9)?
11) What fraction do you	think would be equivalent to	0.14?
12) What fraction do you	think would be equivalent to	0.128?
	think would be equivalent to ers to #11 - 13 by changing y	
Write the fraction equivale	ent to each of the following o	decimal numbers.
14) -0.2 =	15) 5.3 =	16) $0.444444\overline{4} = _$
17) -0.16 =	18) 4.124 =	19) 0.27272727 =
Graph the following sets	of numbers on a number line	e. Then list them in order from least to greatest.
20) {0.6, 0.2, $\frac{2}{9}$, 0. $\overline{4}$ }		· · · · · · · · · · · · · · · · · · ·


21) {2.9, $\frac{21}{10}$, 2.9, 3}

HOMEWORK

Identify the classification(s) for the following numbers by circling the correct answer(s).

1) -4.5	Whole Number	Integer	Rational Number
2) -2	Whole Number	Integer	Rational Number
3) 0.8	Whole Number	Integer	Rational Number
4) -0.2	Whole Number	Integer	Rational Number
5) $-\frac{5}{2}$	Whole Number	Integer	Rational Number
6) 100	Whole Number	Integer	Rational Number

Write the fraction equivalent to each of the following rational numbers.

Graph the following sets of numbers on a number line. Then list them in order from least to greatest.

13) $\{1.2, 1\frac{7}{9}, 1.\overline{2}, 1\frac{1}{2}\}$ 14) $\{\frac{31}{5}, 6.\overline{5}, 6, 6\frac{2}{9}\}$ Review of Lessons 1 through 3 Write an expression for each quantity. 15. the number of cups in 6 quarts ______ the number of cups in *q* quarts ______ 16. the number of quarts in 8 cups ______ the number of quarts in *c* cups ______ Homework is continued on the next page.

Page -	21 -
--------	------

Write a variable expression for each word phrase.

17. 12 less than h _____
 18. The product of 3 and f _____

19. twice *z*_____ **20.** 6 more than twice *w*_____

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.

21. $25 - 4 \cdot 2$ **22.** $(40 \cdot 2) - 4 \cdot 3$ **23.** $7^2 + 3(6 - 4)$

Evaluate if $a = \frac{1}{2}$, x = 6, and y = 5. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.

24. a(10 – x) **25.** axy **26.** 5x – 3y

Multiple Choice: Circle the letter beside the correct answer.

27) If $k = 6$, what is the value of $7k - 2$?	30) Rita is moving a pile of 120 rocks by hand to build a rock wall. If h represents the number of rocks that she can carry		
A. 30 B. 40 C. 54 D. 65	in one load, which expression represents the total number of loads needed to		
28) Which expression represents the product of n and 25?	move the entire pile of rocks?		
	A. 120 + <i>h</i> B. 120 <i>h</i>		
A. 25 <i>n</i> B. 25 – <i>n</i>	C. $120 - h$ D. $\frac{120}{h}$		
C. $25 + n$ D. $25 \div n$	31) Malik has 12 animal books and 26 comic		
29) Which statement shows twice as much as 8?	books. Which number sentence is best to use to find out how many <i>more</i> comic books he has than animal books?		
A. 2+8 B. 2-8	A. 12 + 26 = B. 26 - 12 = D		
C. 2 × 8 D. 2 ÷ 8	C. $12 \times 26 = \Box$ D. $26 \div 12 = \Box$		

Real Numbers

There are more classifications of numbers beyond rational numbers. Some numbers can't be expressed as the ratio of

- -

two integers. If this is the case, they are **irrational numbers**. Rational and irrational numbers together make up real numbers. Irrational numbers do not terminate or repeat when expressed in decimal form. One well known and frequently used irrational number is π . We are going to explore some other irrational numbers.

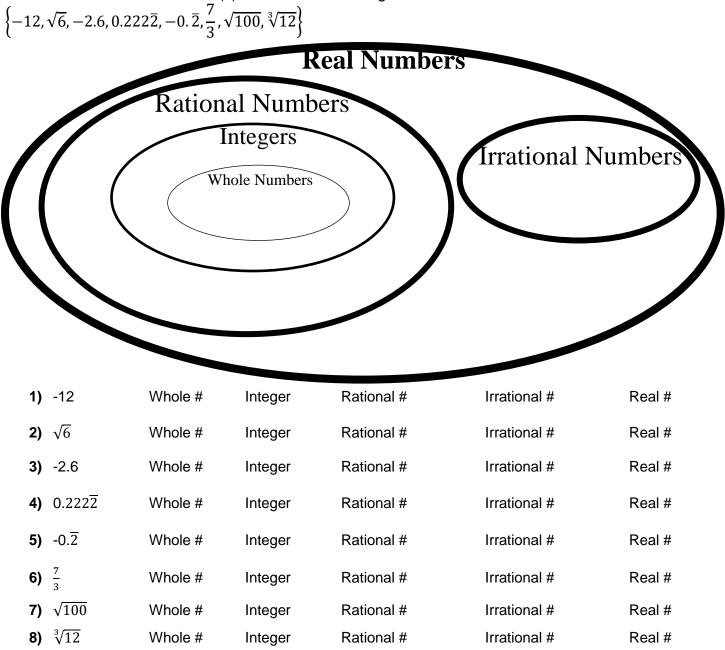
Complete the tables.

	ect Squares 1*1 1 2*2 4			
1 ²	1*1	1		
$ \begin{array}{r} 2^2 \\ 3^2 \\ 4^2 \\ 5^2 \\ 6^2 \\ 7^2 \\ \end{array} $	2*2	4		
3 ²				
4 ²				
5 ²				
6 ²				
7 ²				
8 ² 9 ²				
9 ²				
10 ²				
11 ²				
12 ²				

Perfect Cubes				
1 ³	1*1*1	1		
2 ³	2*2*2	8		
3 ³				
4 ³				
5^{3} 6^{3}				
6 ³				

Note: The square root is used so frequently, the 2 is just left off. So if there isn't a little number to indicate the root, the square root is

You can use the tables from left to right to "undo" the square or cube. This is called taking the square root or cube root of a number.


For example: $\sqrt[2]{16} = 4$ $\sqrt{144} = 12$ $\sqrt[3]{27} = 3$ $\sqrt[3]{\frac{8}{125}} = \frac{2}{5}$ You try: 1) $\sqrt{49} =$ ____ 2) $\sqrt[3]{8} =$ ____ 3) $\sqrt{100} =$ ____ 4) $\sqrt[3]{125} =$ ____ 5) $\sqrt{\frac{4}{9}} =$ _____

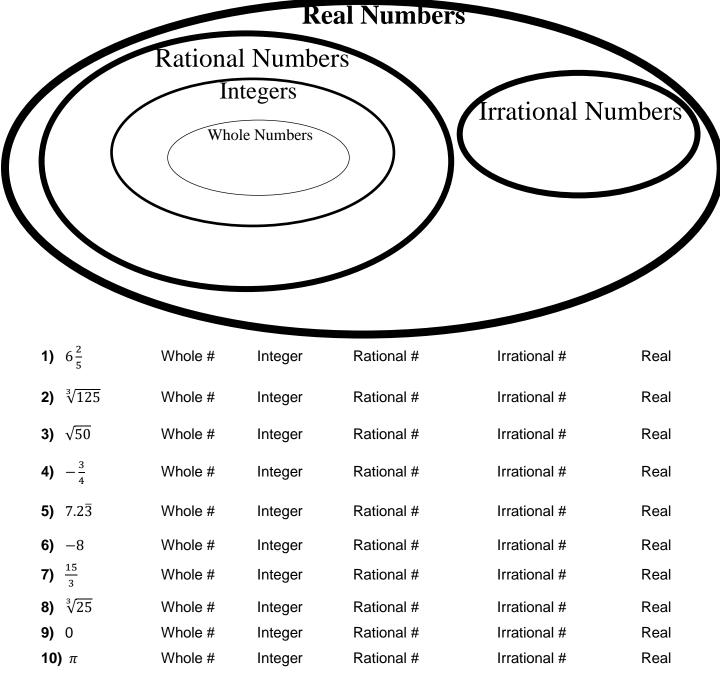
Make a conjecture: What if the number isn't on the list? What if you were asked to find $\sqrt{30}$? What if you were asked to find $\sqrt[3]{24}$? (These are examples of irrational numbers.)

Use what you know	$\sqrt{30}$ is between $\sqrt{25}$	$\overline{5}$ and $\sqrt{36}$, there	efore $\sqrt{30}$	is between 5	and 6.
³	$\sqrt{24}$ is between $\sqrt[3]{8}$ a	and $\sqrt[3]{27}$, therefo	ore $\sqrt[3]{24}$ is	between 2 an	d 3.

State the two consecutive integers that the following irrational numbers are in between:	<u>Consecutive</u> : in a row or one following another. For example 2, 3, 4, 5 are consecutive whole numbers.			
1) $\sqrt{61}$ is between and	2) $\sqrt[3]{118}$ is between and			
3) $\sqrt[3]{100}$ is between and	4) $\sqrt{135}$ is between and			

Objectives: I can identify types of real numbers and express equivalent or approximate numbers for comparison. Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs.

Graph the following sets of numbers on a number line. Mark intervals of $\frac{1}{10}$ on your number lines.


9) { 1.2, $\sqrt{2}$, $1\frac{7}{9}$ }

10) { $4\frac{3}{4}$, $4.\overline{2}$, $\sqrt{24}$ }

HOMEWORK

Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs.

 $\left\{6\frac{2}{5}, \sqrt[3]{125}, \sqrt{50}, -\frac{3}{4}, 7.2\overline{3}, -8, \frac{15}{3}, \sqrt[3]{25}, 0, \pi\right\}$ Real Num

Homework is continued on the next page.

Simplify.

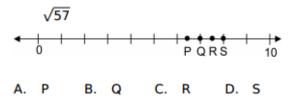
11) $\sqrt{25}$ =	_ 12) ³ √64 =	_ 13) √ <u>64</u> =	14) ³ √1 =	15) √ <u>1</u> =

State the two consecutive integers that the following irrational numbers are in between:

- 1) $\sqrt{20}$ is between _____ and _____
- 2) $\sqrt[3]{40}$ is between _____ and _____

4) $\sqrt{96}$ is between _____ and _____

3) $\sqrt[3]{134}$ is between _____ and _____

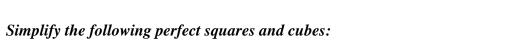

5) Plot and label the following numbers to their correct places on the number line to the right.

$$\frac{4}{3}$$
, $-\frac{2}{3}$, $\sqrt{4}$, $\sqrt{8}$

Multiple Choice: Circle the letter beside the correct answer.

- 6) Which statement is correct?
 - A. All integers are rational numbers.
 - B. All irrational numbers are whole numbers.
 - C. A real number must be a rational number.
 - D. A repeating decimal is an irrational number.
- 7) Which number is irrational?
 - A. $(1.5)^2$ B. $\sqrt{41}$
 - C. √49 D. (15)²
- 8) Which point on the number line shows the *best* estimate of the irrational number below?

- 9) Which set below includes only irrational numbers?
 - A. $\left\{-\sqrt{12}, -3.7\overline{6}, \sqrt{36}, 4.3858...\right\}$ B. $\left\{-7.2322..., \sqrt{5}, \sqrt{15}, 8.27451...\right\}$
 - C. $\{-5.6, \sqrt{14}, 6.3\overline{245}, \sqrt{81}\}$
 - D. $\left\{-\sqrt{8}, .3\overline{7}, 3.265165065..., \sqrt{90}\right\}$
- 10) Which expression shows the first step in finding the value of $6 + 3(5 2)^2$?
 - A. 6 + 3(3)² B. 9(5 2)²
 - C. 6 + (15 2)² D. 6 + 3(25 4)
- 11) Which operation should be performed first in the expression


$$18 - 2 + 5 \times (16 + 66 \div 2)?$$

A. 2+5 B. 5×16

C. 16 + 66 D. 66 ÷ 2

Ident	Identify the following numbers as rational or irrational:							
1.	$\frac{2}{3}$	Rational	Irrational	2.	2.15	Rational	Irrational	
3.	$\sqrt{15}$	Rational	Irrational	4.	-14	Rational	Irrational	
5.	52	Rational	Irrational	6.	∛125	Rational	Irrational	
7.	$\sqrt{49}$	Rational	Irrational	8.	π	Rational	Irrational	
Conv	ert the followin	ng fractions to	decimals:					
9.	$\frac{5}{8} =$			10.	$\frac{4}{9} =$			
Conv	ert the followin	ng decimals to j	fractions:					
11.	11. $0.625 = $ 12. $0.\overline{24} = $							
Betw	een which two	consecutive int	egers are the followin	g numb	ers?			
13.	$\sqrt{35}$			14.	³ √81			
Simplify the following perfect squares and cubes:								
15.	$\sqrt{\frac{4}{9}}$	16.	$\sqrt[3]{\frac{27}{64}}$	17.	$\sqrt{121}$	18.	³ √8	
Put the following numbers in order from least to greatest:								
19.	$\sqrt{6}, \frac{5}{2}, 2.1$			20.	$\frac{22}{3}, \sqrt{60}, 7.6$	5		

21. Graph the following numbers on the number line. Mark intervals of $\frac{1}{10}$ on your number line. $\left\{\sqrt{10}, \ \frac{7}{2}, \ 3. \ \overline{3}\right\}$

8A: Classifying and Comparing Real Numbers *Identify the following numbers as rational or irrational:*