\qquad

Advanced Algebra I Operations with Rational Numbers and Understanding Irrational Numbers

Objectives
> Adding and subtracting integers
> Adding and subtracting rational numbers
> Combining like terms

> Multiplying and dividing integers
$>$ Distributive property
$>$ Multiplying and dividing rational numbers
$>$ Order of operations and evaluating expressions
$>$ Distributive property with combining like terms
> Approximating and graphing irrational \#'s

Beaumont Middle School $8^{\text {t" }}$ Grade Adv Algebra I 2019-2020

Adding \& Subtracting Integers

Rules for adding integers:
If the signs are the same:

Objectives: The students will be able to solve problems by adding \& subtracting integers.
\qquad

If the signs are different: \qquad
\qquad

Rule for subtracting integers:

Practice as notes

Simplify.

1. $-6-(-2)$ \qquad
2. $5+-3$ \qquad 3. $3+-5$ \qquad
3. $-2+-3$ \qquad
4. $5-(-1)$ \qquad
5. $-1+1$ \qquad
6. $3+-10$ \qquad
7. $-20+21$ \qquad
8. $-6-4$ \qquad
9. $4-(-3)$ \qquad
10. $-9-(-6)$ \qquad
11. $5-12$ \qquad
12. $-4-9$ \qquad
13. $-2-10+(-4)$ \qquad
14. $10+(-6)-15-(-6)$ \qquad 16. $-2-6+(-1)-(-3)$ \qquad

Evaluate if $a=2, b=-6$ and $c=10$. Substitution must be shown as a separate step.
17. $a-b+c$
18. $c-b-a$
19. $a-b-2 c$

Page - 3 -

Homework

Simplify.
\qquad 2. $-4-(-72)$ \qquad 3. $-4+-85$ \qquad
4. $3-(-97)$
5. $60-(-6)$ \qquad 6. $5-86$ \qquad
7. $3+10$ \qquad
8. $-20+20$ \qquad 9. $-2-60$ \qquad
10. $-6-(-70)$ \qquad 11. $-7-(-52)$ \qquad 12. $-8+(-31)$ \qquad
13. $-12-13+(-5)$ \qquad 14. $16+(-8)-16-(-3)$ \qquad
15. $28-3+(-6)-(-14)$ \qquad 16. $-24+5-(-5)-6+15$ \qquad

Evaluate if $a=-2, b=8, c=10$ and $d=-10$. Substitution must be shown as a separate step.
17. $c+d$
18. $a-d$
19. $a-b$
20. $a+b$
21. $c-d$
22. $a+d$
23. $a-b+d$
24. $d-a+2 b$
25. $a+c+d$
26. $a-b+c-d$
27. $a+c-d$
28. $a+b-2 c+d$

Adding \& Subtracting Rational Numbers (specifically fractions)

Objectives: The students will be able to solve problems by adding \& subtracting fractions.

When adding or subtracting fractions, do NOT change mixed numbers to improper fractions. You MUST get a common denominator. Some of the fractions include negative numbers. Follow your integer rules.

Practice as notes

Simplify.

1) $\frac{3}{4}+\frac{1}{5}=$
2) $7 \frac{3}{4}-2 \frac{1}{2}=$
3) $\frac{2}{12}+\frac{3}{4}=$
4) $4 \frac{3}{7}-1 \frac{3}{14}=$
5) $-2 \frac{3}{4}+\left(-\frac{2}{3}\right)=$
6) $4 \frac{3}{4}+\left(-1 \frac{1}{5}\right)=$
7) $-6 \frac{2}{3}-\left(-3 \frac{2}{5}\right)=$
8) $-10 \frac{3}{5}-\left(-3 \frac{3}{8}\right)=$

Evaluate if $\mathrm{a}=1 \frac{7}{8}, \mathrm{~b}=-4 \frac{1}{2}$ and $\mathrm{c}=5 \frac{3}{4}$. Substitution must be shown as a separate step.
9. $a-b+c$
10. $c-b-a$

Homework

Simplify.

1) $-\frac{3}{4}+\frac{1}{5}=$
2) $3 \frac{1}{2}+\left(-8 \frac{3}{4}\right)=$
3) $-12 \frac{2}{3}+3 \frac{1}{5}=$
4) $-\frac{6}{7}-\frac{3}{14}=$
5) $1 \frac{1}{10}-\left(-\frac{2}{5}\right)=$
6) $-2 \frac{1}{2}-\left(-4 \frac{5}{8}\right)=$
7) $-2 \frac{2}{3}+\left(-1 \frac{3}{4}\right)=$
8) $-\frac{6}{11}-\frac{3}{22}=$
9) $3 \frac{5}{7}+\left(-2 \frac{2}{3}\right)=$
10) $-5 \frac{3}{8}-4 \frac{1}{6}=$
11) $-\frac{2}{3}+\left(-\frac{1}{4}\right)=$
12) $-3 \frac{2}{3}-\left(-2 \frac{1}{4}\right)=$

Evaluate if $a=-12 \frac{3}{5}, b=8 \frac{1}{3}, c=-4 \frac{7}{10}, d=5 \frac{5}{9}, e=-1 \frac{4}{15}$
13. $a+b$
14. $c-d$
15. $e+d$
16. $a-b+d$
17. $d-a+b$
18. $a+c+e$

Combining Like Terms

In an expression, the terms are the elements separated by the

Objectives: The students will be able to combine like terms to simplify variable expressions. minus sign. A coefficient is the number being multiplied by a variable.

Like terms have the same variables).

$2 x+3 y+4 x-5 y$ $2 x$ and $4 x$ are like terms.
$3 y$ and $-5 y$ are like terms.
-5 is a constant b / c there is no variable hocido it

You can add like terms by adding their coefficients.

$$
2 x+4 x=6 x \quad \text { and } \quad 3 y+(-5 y)=-2 y
$$

So you can simplify $2 x+3 y+4 x-5 y=6 x+-2 y$

Practice

Problem 1. $2 x+3 y+z$
a) What number is the coefficient of x ? \qquad
b) What number is the coefficient of y ? \qquad
c) What number is the coefficient of z ? \qquad

Problem 2. $5 x-4 y-z$ (hint: change the subtraction to plus the opposite)
a) What number is the coefficient of x ? \qquad
b) What number is the coefficient of y ? \qquad
c) What number is the coefficient of z ? \qquad

Problem 3. Add like terms.

a) $6 x+2 x$ \qquad b) $6 x-2 x$ \qquad c) $5 x+x$ \qquad
d) $5 x-x$ \qquad e) $-4 x+5 x$
f) $4 x-5 x$ \qquad
g) $-5 x-3 x$ \qquad h) $-x-x$ \qquad i) $-7 x-(-7 x)$ \qquad
j) $-3 x-4+2 x+6$ \qquad k) $x-2-4 x-5$ \qquad
l) $4 x+y-2 x+3 z$ \qquad m) $3 x-y-8 x+2 y$
n) $\frac{3}{5} x+\frac{1}{9} y+\frac{3}{4} x$ \qquad o) $\frac{5}{4} p+\frac{2}{3}-\frac{1}{4} p$ \qquad
p) $-\frac{1}{7} a+\frac{5}{6} a-\frac{2}{3}$ \qquad q) $-\frac{2}{3} x-\left(-\frac{1}{5} x\right)+\left(-\frac{7}{9}\right)$ \qquad

Homework

Identify how many terms are in each expression.

1) $2 x+3 z-5$ \qquad
2) $3 x$ \qquad
3) $4 c-7 g$ \qquad
4) $10+6 p-5 y+4 u$ \qquad
5) $4 k-9$ \qquad 6) $5 d+8-6 y+w$ \qquad

For each expression name the coefficient and the constant.
7) $-4 x+5$ Coefficient \qquad Constant \qquad
8) $2 y$

Coefficient \qquad Constant \qquad
9) 9h-6 Coefficient \qquad Constant \qquad
10) -3

Coefficient \qquad Constant \qquad
Simplify.
11) $2 x+5 y+9 x$ \qquad
13) $2 p+3 q-5 p+2 q$ \qquad
15) $3 j+4 k-2 f+6 k$ \qquad
17) $4 s+(-7 t)-2 t+3 s$ \qquad
19) $a+b-a+b$ \qquad
21) $x+\frac{3}{8} y-\frac{1}{2} y$ \qquad
23) $\frac{7}{8} x-y-\left(-\frac{2}{3} x\right)+\frac{4}{9}$ \qquad
12) $a+9 b+6 a$ \qquad
14) $\frac{3}{4} x+z+\frac{1}{4} x$ \qquad
16) $1.4 h-5+3 h$ \qquad
18) $4 u-6+(-10 u)-2$
20) $2-4 w+12 w$ \qquad
22) $\frac{9}{2} a+\left(-\frac{5}{4} a\right)-\frac{6}{7} b$ \qquad
24) $-\frac{3}{10} w+\frac{2}{5} y-\frac{2}{5} w+\left(-\frac{2}{5} y\right)$ \qquad

Multiplying and Dividing Integers
Rules for multiplying \& dividing integers:

Objectives: The students will be able to solve problems by multiplying and dividing integers.

If the signs are the same: \qquad
If the signs are different: \qquad

Practice

Simplify.
Division answer is a quotient.

1. -6 * (-2) \qquad 2. $5^{*}-3$ \qquad 3. $3^{*}-5$ \qquad
2. -2 * -3 \qquad $5.5 \div(-1)$ \qquad 6. $-24 \div-3$ \qquad
3. 3 (-10) \qquad
4. $\frac{-36}{-9}$ \qquad 9. $-6 \cdot 4$ \qquad
5. -2 * 10 * (-4) \qquad 11. $10(-6)(-2)(5)$ \qquad 12. $\frac{54}{-6}$ \qquad
Objectives: The students will be able to use the distributive property to simplify variable expressions.
According to the Distributive Property, you distribute or "pass
out" a multiplication to each part of a sum or difference in parentheses.
In $2(a+3)=2 a+6$, we "pass out" the 2 by multiplying it by both the a and the 3 .
Multiply

Multiply $-3(h+2)$
$-3(h)+-3(2)$
$-3 h+-6$
Arithmetic
Algebraic
Order of Operations Distributive property
7(6-4)
$7(6-4)$
$-2(x+4)$
7(2)
7(6) -7(4)
42-28
$-2(x)+-2(4)$
$-2 x+-8$
14
14

Practice

Use the distributive property to simplify.

1. $4(\mathrm{j}+10)$ \qquad 2. $-(4 n-6)$ \qquad
2. $-2(-g-4)$ \qquad 4. $(4 \mathrm{c}+2) 3$ \qquad
3. $6(-2 p+7)$ \qquad 6. $5(2 r-4)$ \qquad

Page-9-

Homework

Find each product or quotient.

1. 4 * (-12) \qquad
2. $-24 \div(-6)$ \qquad
3. 8 (-6) \qquad
4. $\frac{-15}{5}$ \qquad
5. $-4 \cdot(-7)$ \qquad
6. $-12 \div 2$ \qquad
7. -5 * 8 \qquad 8. $\frac{-34}{-34}$
8. $7 \cdot(-6)$ \qquad
9. $-25 \div 5$ \qquad
10. $-6(-15)$ \qquad
11. $\frac{10}{-2}$ \qquad
12. $-7^{*}-3$ \qquad
13. $12 \div 2$ \qquad
14. $7 \cdot-11$ \qquad
15. $-80 \div(-8)$ \qquad 17. 30 * (-6) \qquad 18. $\frac{-50}{5}$ \qquad
16. -10 * 2 * (-3)
\qquad 20. $-50 \div 10$ * (-5) \qquad

Evaluate if $w=-2, x=-10, y=16, \& z=8$.
21. wx
22. wxy
23. $\frac{z}{w}$
24. $x y$

Use the distributive property to simplify.

1. $3(x+4)$ \qquad
2. $-7(t-3)$ \qquad
3. $-2(y+8)$ \qquad
4. $-(-y+3)$ \qquad
5. $8(-x+7)$ \qquad 6. $11(4 x+3)$ \qquad
6. $(x+4) 2$ \qquad 8. $3(-2 b-8)$ \qquad
7. $-3(1-2 k)$ \qquad 10. $(-2 s+9) 6$ \qquad
Combine like terms to simplify.
8. $6 x+3 y+6 y-2 x$ \qquad 15. $18+7 x-12-7 x$ \qquad
9. $10 r+100 s+50 t$ \qquad 17. $3 r+4-5-2 r$ \qquad
10. $12+2+3 x-12-5 y+7 z-10 x$ \qquad

Multiplying and Dividing Rational
 Numbers (specifically fractions)

Objectives: The students will be able to solve problems by multiplying and dividing fractions.

When multiplying fractions, you MUST change mixed numbers to improper fractions. You do NOT get a common denominator. Cross cancel if at all possible. Some of the fractions include negative numbers. Follow your integer rules.

Simplify. All answers should be in simplest form.

1) $\frac{3}{4} * \frac{1}{6}=$
2) $-\frac{14}{5} *-\frac{5}{6}=$
3) $2 \frac{2}{9} * 1 \frac{3}{4}=$
4) $1 \frac{3}{25} *-7 \frac{1}{2}=$

When dividing fractions, you MUST change mixed numbers to improper fractions first. Then change to multiplying by the reciprocal. ONLY then can you cross cancel.

Simplify. All answers should be in simplest form.

1) $\frac{6}{7} \div \frac{2}{3}=$
2) $-\frac{5}{9} \div \frac{10}{3}=$
3) $2 \frac{5}{8} \div \frac{-3}{4}=$
4) $-3 \frac{3}{5} \div-2 \frac{7}{10}=$

Distributive Property with Fractions

1. $\frac{1}{3}(6 x+9)=$
2. $\frac{1}{4}(8 x-12)=$
3. $-\frac{1}{5}(5 x-10)=$
4. $\frac{2}{3}(6 x+9)=$

Homework

Simplify. Show all work.

1) $\frac{7}{6} \cdot \frac{9}{14}=$
2) $-6 \cdot \frac{2}{5}=$
3) $-\frac{18}{5} \cdot \frac{25}{27}=$
4) $2 \frac{1}{2} \cdot 6=$
5) $8 \cdot 5 \frac{1}{2}=$
6) $\left(-6 \frac{1}{4}\right)\left(-2 \frac{2}{5}\right)=$
7) $\frac{3}{7} \div \frac{1}{2}=$
8) $-\frac{7}{9} \div-\frac{21}{6}=$
9) $-6 \frac{1}{8} \div \frac{7}{9}=$
10) $\frac{3}{5} \div-1 \frac{5}{7}=$
11) $1 \frac{3}{4} \div 12 \frac{1}{4}=$
12) $-3 \frac{1}{6} \div-\frac{1}{3}=$
13) $\frac{3}{2}(4 x-2)=$
14) $-\frac{2}{5}(10 x+15)=$
15) $\frac{3}{5}(5 x-20)=$
16) $-\frac{3}{4}(8 x-4)=$

Objectives: The students will be able to solve problems using order of operations.

Order of Operations

Jordan solved the problem $5+4$ * 2 and got the answer of 18. David solved the same problem and got 13. Can both be correct? Is there only one correct order to perform operations? Who is correct?

Don't forget the different symbols for multiplication: $5 * 2$	$5(2) \quad 5 \times 2 \quad 5.2$

$5+4$ * 2
9 * 2
18
$5+4$ * 2
$5+8$
13

P(Level 1)

E(Level 2)
D \& M (Level 3) \qquad
S \& A(Level 4) \qquad

Practice

Steps must be shown so that each line of work is equal to the line above.

1. $5 * 10-6 *-2$
2. $24 \div-6 * 2$
3. $-3-5(7-5)$
4. $18-5 *-3$
$\frac{9+7 * 5}{4}$
5. $2[9(-6-4)]+4$
6. $30-2^{3}$
7. $3(8-14)^{2}$
8. $25-(2+2) *-3$
9. $\frac{8-(7-1)^{2}}{-20+9 * 2}$
10. $-5\left[4^{3}-2(-9+6)\right]$
11. $9(-15-3+14)$

Evaluating Expressions

Objectives: The students will be able to evaluate expressions and solve problems by evaluating expressions.

We have learned that, in an algebraic expression, letters can stand for numbers. When we substitute a specific value for each variable, and then perform the operations, it's called evaluating the expression.

Evaluating a variable expression

Example 1
Evaluate $18+2 \mathrm{~g}$, for $\mathrm{g}=3$.
$18+2 \mathrm{~g} \quad$ Replace the variable
$18+2 * 3$ Use the order of operations to solve.
$18+6$
24

Practice

Evaluate each expression.

1. $63-5 x$, for $x=-7$
2. $4(t+3)+1$, for $t=8$
3. $6(g+h)$, for $g=-18 \& h=7$

Example 2

Evaluate $2 \mathrm{ab}-\frac{c}{3}$, for $\mathrm{a}=3, \mathrm{~b}=4, \mathrm{c}=9$
$2 \mathrm{ab}-\frac{c}{3} \quad$ Replace the variable
2*3*4- $\frac{9}{3}$ Use the order of operations
24-3
21
Remember that a number beside a variable is multiplied. 2a means $2 * a$
4. $2 x y-z$, for $x=4, y=3$, and $z=-1$
5. $\frac{r+s}{2}$, for $r=-13$ and $s=-11$
6. Becky saves $\$ 125$ each year since her first birthday.
a. Write an expression for Becky's savings after 3 years. \qquad
b. Write an expression for Becky's savings after y years \qquad
c. When Becky is 14 years old, how much will she have saved? \qquad

HOMEWORK

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used for this assignment.

1. $50-4 \cdot-5$
2. $(100 \div-5)-6 \cdot-3$
3. $9^{2}+2(-8-4)$
4. $\begin{gathered}16+8 \\ 3+1\end{gathered}$
5. $3(4-6)^{3}$
6. $2[-50-8(-2+-3)]$
7. $20 \div 4^{*}-5$
8. $14-3(-20-(-18))$
9. $-54 \div 6-3 \cdot 2$
10. $-5+2(6-4)$
11. $\frac{21+3}{8-6}-3^{2}$
12. $[10-(4-1)] \cdot-9$
13. $-48 \div 2^{3}$
14. $18-2(-8) \div 4$
15. $\frac{5 * 10}{25}+4 \div 2$
16. $7+2(-15+6)$
17. $2\left[-3 * 2^{3}-3(2+1)\right]$
18. $\frac{10+(8-3)^{2}}{20-5 * 3}$

HOMEWORK

Evaluate each expression.

1. $x y$, for $x=3$ and $y=-5$
2. $18 a-9 b$, for $a=-10$ and $b=-5$
3. $-24-5 p$, for $p=-4$
4. $850-2 h$, for $h=-215$

For \#5-8, evaluate if $a=\frac{1}{2}, x=-4$, and $y=2$.
5. $a(10-x)$
6. axy
7. $5 x-3 y$
8. $4 x+2(x+3 y)$
10. A tree grows 5 inches in a year.
a. Write an expression for the tree's height after x years.
b. When the tree is 36 years old, how tall will it be? \qquad

Evaluate each expression.
11. $\frac{a b}{2}+4 c$, for $\mathrm{a}=6, \mathrm{~b}=5$, and $\mathrm{c}=-3 \quad$ 12. $\mathrm{x}(\mathrm{y}+5)-\mathrm{z}$, for $\mathrm{x}=3, \mathrm{y}=2$, and $\mathrm{z}=-7$

Distributive Property with Combining Like Terms

We will complete one or two problems from each section for notes.
Use Distributive Property to simplify each expression.

Objectives: The students will be able to use the distributive property and combine like terms to simplify variable expressions.

1) $7(1-8 n)$
2) $-8(b+3)$
3) $-6(9-9 v)$
4) $-(3 x-9)$
5) $-9(n+6)$
6) $-10(a+2)$
7) $(5 k-10) \cdot-9$
8) $-4(4+3 p)$

Use Distributive Property AND Combining Like Terms to simplify each expression. problems.
9) $-6(x+2)-2$
10) $4 n-(7-6 n)$
11) $-3-7(-3-6 v)$
12) $-5(a-6)+2 a$

Use Distributive Property AND Combining Like terms to simplify each expression.
13) $7(5 n-8)+6(4+6 n)$
14) $-(3 a+2)-3(5 a+7)$
15) $-5(1+2 k)-8(-4+5 k)$
16) $5(-3 p+7)+5(p-1)$
17) $-5(x+2)+5(x-5)$
18) $-4(1-8 n)-4(8 n+4)$

Use Distributive Property AND Combining Like terms to simplify each expression.
19) $9(m+8)+11(3 m+4)$
21) $7(-12 x-3)+10(6 x+7)$
20) $11(8 r+3)-2(-9+6 r)$
22) $-9(1-10 n)-2(3 n+9)$
23) $\frac{1}{3}(9 x-12)-(-x+7)$
25) $\frac{-2}{9}(27 x-18)+\frac{5}{6}(12 x+36)$
26) $\frac{1}{8}(-16 c+64)-\frac{4}{7}(42 c-63)$
27) $\frac{-11}{5}(40 r-15)-\frac{2}{9}(-81+54 r)$
28) $-\frac{9}{8}(8-80 n)-\frac{2}{7}(21 n+63)$

Rational Numbers

Numbers have different classifications. Some numbers can be classified in multiple ways. A rational number is any number that

Objectives: I can identify types of rational numbers and express equivalent numbers for comparison. you can write as a ratio, $\frac{a}{b}$ of two integers, where b is not zero. The diagram below shows relationships among rational numbers.

Always simplify numbers before classifying them. Every whole number is also an integer and a rational number. Every integer is also a rational number.

Practice

Identify the classification(s) for the following numbers by circling the classification(s) for each.

1) 5.8
2) 6
3) -10
4) $0 . \overline{6}$
5) $\frac{1}{2} \quad$ Whole Number
6) $-\frac{2}{3}$

Whole Number
Whole Number
Integer
Integer
Integer

Rational Number
Rational Number
Rational Number
Rational Number
Rational Number
Rational Number

Express each of the fractions as decimals.

1) $\frac{1}{9}=$ \qquad
2) $\frac{2}{9}=$ \qquad
3) $\frac{3}{9}=$ \qquad
4) $\frac{4}{9}=$ \qquad
5) $\frac{5}{9}=$ \qquad
6) $\frac{6}{9}=$ \qquad
7) $\frac{7}{9}=$ \qquad
8) $\frac{8}{9}=$ \qquad
9) $\frac{9}{9}=$ \qquad
10) What pattern is shown when the denominator is 9 ? \qquad
11) What fraction do you think would be equivalent to $0 . \overline{14}$? \qquad
12) What fraction do you think would be equivalent to $0 . \overline{128}$? \qquad
13) What fraction do you think would be equivalent to $0 . \overline{32}$? \qquad
Check your answers to \#11-13 by changing your fraction to a decimal.

Write the fraction equivalent to each of the following decimal numbers.
14) $-0 . \overline{2}=$ \qquad
15) $5 . \overline{3}=$ \qquad
16) $0.444444 \overline{4}=$ \qquad
17) $-0 . \overline{16}=$ \qquad
18) $4 . \overline{124}=$ \qquad
19) $0.272727 \overline{27}=$ \qquad

Graph the following sets of numbers on a number line. Then list them in order from least to greatest. 20) $\left\{0.6,0.2, \frac{2}{9}, 0 . \overline{4}\right\}$

\qquad
21) $\left\{2.9, \frac{21}{10}, 2 . \overline{9}, 3\right\}$

\qquad

HOMEWORK

Identify the classification(s) for the following numbers by circling the correct answer(s).

1) -4.5

Whole Number
Integer
Rational Number
2) -2

Whole Number
Integer
Rational Number
3) $0 . \overline{8}$

Whole Number
Integer
Rational Number
4) $-0 . \overline{2}$

Whole Number
Integer
Rational Number
5) $-\frac{5}{2}$

Whole Number
Integer
6) 100

Whole Number
Integer
Rational Number
Rational Number

Write the fraction equivalent to each of the following rational numbers.
7) $-6 . \overline{1}=$ \qquad 8) $0 . \overline{6}=$ \qquad 9) $0 . \overline{95}=$ \qquad
10) $0.2222 \overline{2}=$ \qquad 11) $-0 . \overline{73}=$ \qquad 12) $5 . \overline{824}=$ \qquad

Graph the following sets of numbers on a number line. Then list them in order from least to greatest.
13) $\left\{1.2,1 \frac{7}{9}, 1 . \overline{2}, 1 \frac{1}{2}\right\}$

\qquad
14) $\left\{\frac{31}{5}, 6 . \overline{5}, 6,6 \frac{2}{9}\right\}$

\qquad

Review of Lessons 1 through 3

Write an expression for each quantity.
15. the number of cups in 6 quarts \qquad

16. the number of quarts in 8 cups \qquad the number of quarts in c cups \qquad

Write a variable expression for each word phrase.
17. 12 less than h \qquad 18. The product of 3 and f \qquad
19. twice z \qquad 20. 6 more than twice w \qquad

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
21. $25-4 \cdot 2$
22. $(40 \div 2)-4 \cdot 3$
23. $7^{2}+3(6-4)$

Evaluate if $a=\frac{1}{2}, x=6$, and $y=5$. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
24. $a(10-x)$
25. axy
26. $5 x-3 y$

Multiple Choice: Circle the letter beside the correct answer.
27) If $k=6$, what is the value of $7 k-2$?
A. 30
B. 40
C. 54
D. 65
28) Which expression represents the product of n and 25 ?
A. $25 n$
B. $25-n$
C. $25+n$
D. $25 \div n$
29) Which statement shows twice as much as 8 ?
A. $2+8$
B. 2-8
C. 2×8
D. $2 \div 8$
30) Rita is moving a pile of 120 rocks by hand to build a rock wall. If h represents the number of rocks that she can carry in one load, which expression represents the total number of loads needed to move the entire pile of rocks?
A. $120+h$
B. $120 h$
C. $120-h$
D. $\frac{120}{h}$
31) Malik has 12 animal books and 26 comic books. Which number sentence is best to use to find out how many more comic books he has than animal books?
A. $12+26=$
B. $26-12=\square$
C. $12 \times 26=$
D. $26 \div 12=$

Real Numbers

There are more classifications of numbers beyond rational

Objectives: I can identify types of real numbers and express equivalent or approximate numbers for comparison. numbers. Some numbers can't be expressed as the ratio of
two integers. If this is the case, they are irrational numbers. Rational and irrational numbers together make up real numbers. Irrational numbers do not terminate or repeat when expressed in decimal form. One well known and frequently used irrational number is π. We are going to explore some other irrational numbers.

Complete the tables.

Perfect Squares		
1^{2}	$1^{*} 1$	1
2^{2}	$2^{*} 2$	4
3^{2}		
4^{2}		
5^{2}		
6^{2}		
7^{2}		
8^{2}		
9^{2}		
10^{2}		
11^{2}		
12^{2}		

Perfect Cubes		
$\mathbf{1}^{3}$	$1^{*} 1^{*} 1$	1
2^{3}	$2^{*} 2^{*} 2$	8
3^{3}		
4^{3}		
5^{3}		
6^{3}		

Note: The square root is used so frequently, the 2 is just left off. So if there isn't a little number to indicate the root, the square root is
You can use the tables from left to right to "undo" the square or cube. This is called taking the square root or cube root of a number.
For example:

$$
\sqrt[2]{16}=4
$$

$$
\sqrt{144}=12
$$

$$
\sqrt[3]{27}=3 \quad \sqrt[3]{\frac{8}{125}}=\frac{2}{5}
$$

You try:

1) $\sqrt{49}=$ \qquad 2) $\sqrt[3]{8}=$ \qquad 3) $\sqrt{100}=$ \qquad 4) $\sqrt[3]{125}=$ \qquad 5) $\sqrt{\frac{4}{9}}=$ \qquad

Make a conjecture: What if the number isn't on the list? What if you were asked to find $\sqrt{30}$? What if you were asked to find $\sqrt[3]{24}$? (These are examples of irrational numbers.)

Use what you know... $\sqrt{30}$ is between $\sqrt{25}$ and $\sqrt{36}$, therefore $\sqrt{30}$ is between 5 and 6 .
$\ldots \sqrt[3]{24}$ is between $\sqrt[3]{8}$ and $\sqrt[3]{27}$, therefore $\sqrt[3]{24}$ is between 2 and 3 .
State the two consecutive integers that the following irrational numbers are in between:

1) $\sqrt{61}$ is between \qquad and \qquad 2) $\sqrt[3]{118}$ is between \qquad and \qquad
2) $\sqrt[3]{100}$ is between \qquad and \qquad 4) $\sqrt{135}$ is between \qquad and \qquad

Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs.

Graph the following sets of numbers on a number line. Mark intervals of $\frac{1}{10}$ on your number lines.
9) $\left\{1.2, \sqrt{2}, 1 \frac{7}{9}\right\}$

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l}
* & & & & & & & & & & & & \longrightarrow
\end{array}
$$

10) $\left\{4 \frac{3}{4}, 4 . \overline{2}, \sqrt{24}\right\}$

HOMEWORK

Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs. $\left\{6 \frac{2}{5}, \sqrt[3]{125}, \sqrt{50},-\frac{3}{4}, 7.2 \overline{3},-8, \frac{15}{3}, \sqrt[3]{25}, 0, \pi\right\}$

1) $6 \frac{2}{5}$
2) $\sqrt[3]{125}$

Whole \#
Integer
Rational \#
Rational \#
Irrational \#
3) $\sqrt{50}$

Whole \#
Integer
Rational \#
Irrational \#
4) $-\frac{3}{4}$
5) $7.2 \overline{3}$

Whole \#
Integer
Rational \#
Irrational \#
Irrational \# Real
6) -8

Whole \#
Integer
Rational \#
Irrational \#
7) $\frac{15}{3}$
8) $\sqrt[3]{25}$
9) 0
10) π

Whole \#
Integer
Rational \#
Irrational \#
Whole \#
Integer
Rational \#
Irrational \#
Rational \#
Rational \#
Irrational \#
|rrational \#
Rational \#

Real
Real
Real
Real
Real
Real
Real
Real
Real

Real

Homework is continued on the next page.

Simplify.
11) $\sqrt{25}=$ \qquad 12) $\sqrt[3]{64}=$ \qquad 13) $\sqrt{64}=$ \qquad 14) $\sqrt[3]{1}=$ \qquad
15) $\sqrt{1}=$ \qquad

State the two consecutive integers that the following irrational numbers are in between:

1) $\sqrt{20}$ is between \qquad and \qquad 2) $\sqrt[3]{40}$ is between \qquad and \qquad
2) $\sqrt[3]{134}$ is between \qquad and \qquad 4) $\sqrt{96}$ is between \qquad and \qquad
3) Plot and label the following numbers to their correct places on the number line to the right.

$$
\frac{4}{3},-\frac{2}{3}, \sqrt{4}, \sqrt{8}
$$

Multiple Choice: Circle the letter beside the correct answer.

6) Which statement is correct?
A. All integers are rational numbers.
B. All irrational numbers are whole numbers.
C. A real number must be a rational number.
D. A repeating decimal is an irrational number.
7) Which number is irrational?
A. $(1.5)^{2}$
B. $\sqrt{41}$
C. $\sqrt{49}$
D. $(15)^{2}$
8) Which point on the number line shows the best estimate of the irrational number below?

A. P
B. Q
C. R
D. S
9) Which set below includes only irrational numbers?
A. $\{-\sqrt{12},-3.7 \overline{6}, \sqrt{36}, 4.3858 \ldots\}$
B. $\{-7.2322 \ldots, \sqrt{5}, \sqrt{15}, 8.27451 \ldots\}$
C. $\{-5.6, \sqrt{14}, 6.3 \overline{245}, \sqrt{81}\}$
D. $\{-\sqrt{8}, .3 \overline{7}, 3.265165065 \ldots, \sqrt{90}\}$
10) Which expression shows the first step in finding the value of $6+3(5-2)^{2}$?
A. $6+3(3)^{2}$
B. $9(5-2)^{2}$
C. $6+(15-2)^{2}$
D. $6+3(25-4)$
11) Which operation should be performed first in the expression

$$
18-2+5 \times(16+66 \div 2) ?
$$

A. $2+5$
B. 5×16
C. $16+66$
D. $66 \div 2$

8A: Classifying and Comparing Real Numbers
Identify the following numbers as rational or irrational:

1. $\frac{2}{3}$
Rational Irrational
2. $2 . \overline{15}$
Rational Irrational
3. $\sqrt{15}$
Rational Irrational
4. -14
Rational
Irrational
5. 52
Rational Irrational
6. $\sqrt[3]{125} \quad$ Rational \quad Irrational
7. $\sqrt{49}$
Rational
Irrational
8. $\pi \quad$ Rational
Irrational

Convert the following fractions to decimals:
9. $\frac{5}{8}=$ \qquad
10. $\frac{4}{9}=$ \qquad

Convert the following decimals to fractions:
11. $0.625=$ \qquad
12. $0 . \overline{24}=$ \qquad

Between which two consecutive integers are the following numbers?
13. $\sqrt{35}$
14. $\sqrt[3]{81}$

Simplify the following perfect squares and cubes:
15. $\sqrt{\frac{4}{9}}$
16. $\sqrt[3]{\frac{27}{64}}$
17. $\sqrt{121}$
18. $\sqrt[3]{8}$

Put the following numbers in order from least to greatest:
19. $\sqrt{6}, \frac{5}{2}, 2.1$
20. $\frac{22}{3}, \sqrt{60}, 7.6$
21. Graph the following numbers on the number line. Mark intervals of $\frac{1}{10}$ on your number line.

$$
\left\{\sqrt{\mathbf{1 0}}, \frac{7}{2}, 3 . \overline{3}\right\}
$$

