\qquad

Til Fumenioms

- I can model a life situation with a graph.
- I can distinguish between a function and a relation.
- I can represent ordered pairs as a list, a map, a table, and a graph.
- I can identify the domain and range.
- I can evaluate an equation utilizing function notation.

Graphs to Model Real-Life Situations

This assignment will be completed in class as an activity for more than one day.
A. CHOOSE THE CORRECT GRAPH THAT DEPICTS THE SITUATION.

1. \qquad Train Station
2. \qquad Ferris Wheel
3. \qquad Hill Climbing
4. \qquad Child Swinging
5. \qquad Child on Slide
B. SKETCH A GRAPH OF THE FOLLOWING SITUATIONS.
6. Sara

7. Rashid

8. Kendra

Time

4. Frozen Dinners

5. Water Level

C. SKETCH A GRAPH OF THE ACTION IN EACH MOVIE CLIP.

1. Sully

2. Dash

3. Wesley

4. Spiderman

5. Neville

Graphing Situations Practice \#1

Choose the best graph for the given situation. Copy the graph and label the axes with the variables given in parentheses. The first variable named goes on the x-axis, the second goes on the y-axis.

1) Katrina walked from home to the library, did some homework, then walked back.
(Variables: time and distance from home)

2) Katrina walked from home to the library, did some homework, then walked back.
(Variables: time and speed)

Choices for \#1 and \#2:

3) When jogging, Shaddie starts slowly, builds up to a comfortable speed, then slows down near the end.
(Variables: time and distance)

4) When jogging, Shaddie starts slowly, builds up to a comfortable speed, then slows down near the end.
(Variables: time and speed)

Choices for \#3 and \#4:

Homework is continued on the next page

6) Mr. Overbey walked to the subway station, waited a few minutes, then got on a train.
(Variables: time and speed)

Choices for \#5 and \#6:

8) Every week the plant in our classroom is taller than the week before.
(Variables: \# of weeks and height of plant)

Choices for \#7 and \#8:

Review

Simplify without a calculator. You should be able to calculate these mentally.

1) $\frac{480}{6}=$
2) $\frac{300}{50}=$
3) $\frac{42000}{700}=$
4) $\frac{72000}{90}=$
5) $\frac{52}{2}=$
6) $\frac{246}{2}=$
7) $\frac{963}{3}=$
8) $\frac{562}{2}=$

Construct a number line on the grid and then graph the following sets of numbers.
5) $\{-2,-4,1\}$ using an interval of 1

6) $\left\{\frac{23}{10}, \frac{8}{3}, \frac{9}{4}\right\}$ using an interval of 0.1

Solve the following equations.
7) $\frac{2 x+6}{5}=-8$
8) $\frac{x}{7}-4=3$
9) $7-(2 x-4)=-3 x$
10) $6(2 x+4)-7=3(-4 x+5)+2$
11) $4(-2 x+3)-10=-8(x-2)-7$
12) $9-\frac{2}{3} x=17$
13) $5-\frac{x}{4}=12$
14) $6 x-\frac{2}{3}(9 x+12)=-8$

Graphing Situations Practice \#2

Choose the best graph for the given situation. Copy the graph and label the axes with the variables given in parentheses. The first variable named goes on the x-axis, the second goes on the y-axis.

1) Each month the baby hippo weighed twice as much as it had weighed the month before.
(Variables: time and weight)

Choices for \#1 and \#2:

3) Erica walked from home to a friend's house, watched TV for a while, then walked back home.
(Variables: time and Erica's distance from home)
2) Each hour there was half as much medication in the blood as there had been an hour before.
(Variables: time and medication)

4) Erica walked from home to a friend's house, watched TV for a while, then walked back home.
(Variables: time and Erica's speed)

Choices for \#3 and \#4:

5) As our subway train leaves Station A, it accelerates to top speed, then maintains this speed until it begins to slow down and finally stops at Station B.
(Variables: time and distance from Station A)
6) As our subway train leaves Station A, it accelerates to top speed, then maintains this speed until it begins to slow down and finally stops at Station B.
(Variables: time and speed from Station A)

Choices for \#5 and \#6:

7) A backpacker hikes toward a campsite at a steady rate until he stops for a while to rest. Then he continues at the original rate until he stops at the campsite.
(Variables: time and distance from campsite)

8) A backpacker hikes toward a campsite at a steady rate until he stops for a while to rest.
Then he continues at the original rate until he stops at the campsite.
(Variables: time and speed)

Choices for \#7 and \#8:

> 9) The roller coaster goes slower and slower as it rolls uphill. Then it goes faster and faster as we roll down the other side.
> (Variables: time and distance travelled)
10) The roller coaster goes slower and slower as it rolls uphill. Then it goes faster and faster as we roll down the other side.
(Variables: time and speed of the coaster)

Choices for \# 9 and 10:

Sketch a graph for each situation. Label each axis as indicated.
11) Katie walked to school from home at a steady rate, then realized she was late and ran the rest of the way at top speed.
(Variables: time and distance from home)
12) Ray rode his bike up a hill at a slow but steady speed, then went faster and faster as he rode down the other side.
(Variables: time and speed)

Review

Simplify without a calculator. You should be able to calculate these mentally.

1) $\frac{5600}{80}=$
2) $\frac{45000}{90}=$
3) $\frac{6400}{800}=$
4) $\frac{240000}{600}=$
5) $\frac{2005}{5}=$
6) $\frac{633}{3}=$
7) $\frac{460}{4}=$
8) $\frac{7204}{2}=$

Construct a number line on the grid and then graph the following sets of numbers.
5) $\{3,-5,-2\}$ using an interval of 1

6) $\left\{-\frac{39}{10},-\frac{15}{4},-\frac{10}{3}\right\}$ using an interval of 0.1

Solve the following equations.
7) $\frac{-5 x+6}{7}=-2$
8) $-\frac{x}{3}+4=8$
9) $9-(-3 x-7)=2 x$
10) $\frac{2}{7}[x-(3 x-21)]=18$
11) $8(-2 x+3)-1=-4(4 x-2)+17$
12) $16-\frac{4}{5} x=-24$
13) $9-\frac{x}{7}=-2$
14) $6 x-\frac{1}{4}(8 x-12)=-17$

Relations and Functions

The domain is the set of all x values in the relation
$:\{(2,3),(-1,5),(4,-2),(\underline{(2,9),}(\underline{0},-6)\}:$
These are the x values written in a set from smallest to largest domain $=\{-1,0,2,4,9\}$

A relation is a set of ordered pairs.

The range is the set of all y values in the relation

$$
\begin{aligned}
& \{(2,3),(-1,5),(4,-2),(9, \underline{q}),(0,-6)\} \\
&
\end{aligned}
$$

These are the y values written in a set from smallest to largest range $=\{-6 .-2.3 \cdot 5 \cdot 9\}$

A relation assigns the x 's with y 's

Domain (set of all x's)

Range (set of all y's)

This relation can be written $\{(1,6),(2,2),(3,4),(4,8),(5,10)\}$

A function f from set A to set B is a rule of correspondence that assigns to each element x in the

 set A exactly one element y in the set B.

Set A is the domain

This is a

 function --itmeets our conditions

Set B is the range
Must use all the x 's
 The x value can only be assigned to one y

Let's look at another relation and decide if it is a function.
The second condition says each x can have only one y, but it $\underline{C A N}$ be the same y as another x gets assigned to.

Set A is the domain
This is a function --it meets our conditions

A good example that you can "relate" to is students in our maths class this semester are set A. The grade they earn out of the class is set B. Each student must be assigned a grade and can only be assigned ONE grade, but more than one student can get the same grade (we hope so---we want lots of A's). The example shown on the previous screen had each student getting the same grade. That's okay.

Check this relation out to determine if it is a function. This is fine-each student gets only one grade. More than one can get an A and I don 't have to give any D's (so all y's don't need to be used).

$$
\text { Set } \mathrm{A} \text { is the domain }
$$

Set B is the range

This is a function
Must use all thex's

Notes: Function or Not a Function????

Determine which of the relations below are functions. Circle the correct answer.

Sets of Coordinates:

1) $\{(-2,7),(-1,5),(0,3),(1,1),(2,1)\}$
2) $\{(-7,20),(3,5),(0,5),(-2,0),(6,-4),(-6,-9),(4,4)\}$
3) $\{(4,8),(-3,-2),(9,6),(2,-1),(-4,-5),(2,7),(-8,0)\}$

Function or Not a Function
Function or Not a Function
Function or Not a Function

Tables of Values:

4) | x | y |
| :---: | :---: |
| 0 | -19 |
| 1 | -12 |
| 2 | -4 |
| 3 | 3 |
| 4 | 13 |
| 5 | 27 |

Function or Not a Function

Graphs:

Function or Not a Function
Mapping Diagrams:
10)

Function or Not a Function
5)

x	y
-5	8
-3	8
-1	-2
1	-2
3	11
5	23

Function or Not a Function

Function or Not a Function
11)

Function or Not a Function
6)

x	y
-2	-7
-2	5
0	-16
2	0
2	6

Function or Not a Function

Function or Not a Function
12)

Function or Not a Function

More Notes: Representing Relations

Express the relation as a table, a graph, and a mapping. Then determine the domain and range. Determine whether each relation is a function.
13) $\{(-1,-1),(1,1),(2,5),(3,2)\}$

Domain: \qquad Range: \qquad Function? \qquad

Homework: Function or Not a Function???

Determine which of the relations below are functions. Circle the correct answer.

1) $\{(1,-2),(-2,0),(-1,2),(1,3)\} \quad$ Function or Not a Function
2) $\{(1,1),(2,2),(3,5),(4,10),(5,15)\} \quad$ Function or Not a Function
3) $\left\{\left(17, \frac{15}{4}\right),\left(\frac{15}{4}, 17\right),\left(15, \frac{17}{4}\right),\left(\frac{17}{4}, 15\right)\right\}$ Function or Not a Function
4)

x	y
-5	-2
-4	-1
-3	0
-4	1
-5	2

Function or Not a Function
5)

\mathbf{x}	\mathbf{y}
-5	-2
-4	-1
-3	0
-2	-1
-1	-2

Function or Not a Function
6)

x	y
-5	-2
-4	2
-3	-2
-2	2
-1	-2

Function or Not a Function

Function or Not a Function
10)

Function or Not a Function

Function or Not a Function
11)

Function or Not a Function
9)

Function or Not a Function
12)

Function or Not a Function

Representing Relations: Express the relation as a table, a graph, and a mapping. Then determine the domain and range. Determine whether each relation is a function.
13) $\{(0,4),(-4,-4),(-2,3),(4,0)\}$

\mathbf{x}	\mathbf{y}

Domain: \qquad Range: \qquad Function? \qquad

Domain: \qquad Range: \qquad

Function? \qquad

Function Notation

We commonly call functions by letters. Because function starts with f, it is a commonly used letter to refer to functions.

$=2 x^{2}-$ $-3 x+6$

The left side DOES NOT MEAN f times x like brackets usually do, it simply tells us what is on the right handside.

The left hand side of this equation is the function notation. It tells us two things. We called the function f and the variable in the function is x.

Remember---this tells you what is on the right hand side---it is not something you work. It says that the right handside is the
 functionf and it has x in it.
$f(2)=2(4)-3(2)+6=8-6+6 \xlongequal{8}$
So we have a function called f that has the variable x in it.
Using function notation we could then ask the following:
This means to find the functionf and instead of
Find $f(2) \quad$ having an x in it, put a 2 in it. So let's take the functionabove and make brackets everywhere the x was and in its place, put in a 2.

Don't forget order of operations---powers, then multiplication, finally addition \& subtraction

Find $f(-2)$.

$$
\begin{gathered}
f(x)=2 x^{2}-3 x+6 \\
f(-2)=2(-2)^{2}-3(-2)+6
\end{gathered}
$$

$f(-2)=2(4)-3(-2)+6=8+6+6=20$

This means to find the function fand instead of having an x in it, put a-2 in it. So let's take the function above and make brackets everywhere the x was and in its place, put in a-2.

Don't forget order of operations---powers, then multiplication, finally addition \& subtraction

Notes: Using Function Notation

From a given rule for a relation, you can write a table of values.
Choose convenient x-values (domain or input). Evaluate for corresponding y-values (range or output).

1) Write a table of values and graph.
$f(x)=2 x^{2}$

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}}$		$\boldsymbol{f}(\boldsymbol{x})$
-2	$2($	$)^{2}=2(\quad)=$	
-1	$2($	$)^{2}=2(\quad)=$	
0	$2($	$)^{2}=2(\quad)=$	
1	$2($	$)^{2}=2(\quad)=$	
2	$2($	$)^{2}=2(\quad)=$	

2) Write a table of values and graph.

$f(x)=-x^{2}$

\boldsymbol{x}	$-\boldsymbol{x}^{2}$	$\boldsymbol{f}(\boldsymbol{x})$
-2	-()$^{2}=$	
-1	-()$^{2}=$	
0	-()$^{2}=$	
1	-()$^{2}=$	
2	-()$^{2}=$	

The rule for a function f is written with the symbol $f(x)$, read " f of x ", where x is the variable of the domain.

Rule
$y=x+4$

Function notation $f(x)=x+4$ Find $f(3)$ means evaluate this function for $x=3$.
$f(3)=3+4=7$

Evaluate each function for the given x -value.

$$
\text { 3) } \begin{aligned}
\boldsymbol{f}(\boldsymbol{x}) & =2 \boldsymbol{x}-\mathbf{7} \\
\boldsymbol{f}(-\mathbf{5}) & =2(-5)-7 \\
& =-10-7 \\
& =-10+-7 \\
& =-17
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
& \boldsymbol{g}(\boldsymbol{x})=\mathbf{5} \boldsymbol{x}^{2}+\mathbf{1} \\
& \boldsymbol{g}(\mathbf{3})=5(\ldots)^{2}+1
\end{aligned}
$$

5) $f(x)=8 x^{2}+5$
$f(-1)=$

Homework: Using Function Notation:

Determine whether each relation is a function. (Write "function" or "not a function".)
1)

4) $\{(4,2),(2,3),(6,1)\}$
\qquad

Given $f(x)=2 x-4$ and $g(x)=x^{2}-4 x$, find each value. Show all work.
7) $f(4)$ \qquad 8) $g(2)$ \qquad 9) $f(-5)$
\qquad
\qquad
\qquad
10) $g(-3)$ \qquad 11) $f\left(\frac{1}{4}\right)$
12) $g\left(\frac{1}{2}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homework is continued on the next page

Complete the table and graph each function.
13) $f(x)=-2 x+5$

\boldsymbol{x}	$-\mathbf{2 x}+\mathbf{5}$	$\boldsymbol{f}(\boldsymbol{x})$
-2	$-2(-2)+5=4+5=$	9
-1		
0		
1		
2		

13) $f(x)=x^{2}-4$

\boldsymbol{x}	$x^{2}-4$	$\boldsymbol{f}(\boldsymbol{x})$
-2		
-1		
0		
1		
2		

Draw a mapping diagram of the set of ordered pairs.
14) $\{(1,3),(5,7),(8,10),(14,16)\}$

16) The graph shows the speed a student travelled on the way to school.
a) What do the flat parts of the graph represent?
b) Circle the sections of the graph that show speed decreasing.
\qquad
15) $\{(0,10),(4,6),(6,4),(7,3)\}$

Review: PRACTICE WITH FUNCTION NOTATION

In Exercises 1-3, find the domain and range of the relation.

Age (years)	Height (inches)
4	41
8	49
12	58
16	67

time (hours)	distance (miles)
0	60
4	120
8	240
12	480

time (years)	population
0	1000
5	1050
10	1000
15	1100

1. Domain: \qquad 2. Domain: \qquad 3. Domain: \qquad
Range: \qquad
In Exercises 4-7, find the indicated values for the function.
2. Example: $f(x)=4 x-7$
a. $f(3)$
b. $f(-5)$
3. $f(x)=-3 x+10$
a. $f(4)$ b. $f(-9)$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\mathbf{4} \boldsymbol{x}-\mathbf{7}$	$\boldsymbol{f}(\boldsymbol{x})$
3	$f(3)=4(3)-7$	5
-5	$f(-5)=4(-5)-7$	-27

x	$f(x)=-3 x+10$	$f(x)$

6. $f(x)=x^{2}+5 x-1$
a. $f(6)$
b. $f(-4)$

x	$f(x)=$	$f(x)$

8. $f(x)=2 x+7 \quad\{5,18,-5\}$

x	$f(x)=$	$f(x)$

10. $f(x)=3 x^{2}-1 \quad\{2,4,-3\}$

x	$f(x)=$	$f(x)$

7. $f(x)=-2 x^{2}-3 x+8$
a. $f(5)$ b. $f(0)$

x	$f(x)=$	$f(x)$

9. $q(x)=9-4 x\{-2,10,-1\}$

\boldsymbol{x}	$f(x)=$	$f(x)$

11. $h(x)=x^{2}+8 x-3 \quad\{1,5,-2\}$

x	$f(x)=$	$f(x)$

Determine whether each relation is a function. (Write "function" or "not a function".)

x	y
-1	10
-2	13
-3	16

x	y
2	0
2	-1
3	-4

x	y
-1	1
-3	1
-5	1

12. \qquad 13. \qquad 14. \qquad 15. \qquad
16. $\{(7,4),(6,3),(5,2)\}$ \qquad 17. $\{(15,0), 15,-2),(15,-4)\}$ \qquad
18.

19

20.

21.

Complete a mapping diagram and then state if the relation is a function.
22. $\{(0,11),(1,8),(4,15),(6,19)\}$ \qquad 23. $\{(1,0),(2,0),(3,0),(4,2),(5,2)\}$

\qquad
24. The graph shows the relationship between time and total distance traveled by a teacher riding a bus.
a. What does the flat part of the graph represent?
b.) The first section of the graph is steeper than the last section. Was the bus traveling faster in the first part of the trip or the last?
Total Distance
Bus Ride
Time

