
1) Classify the following numbers and write them in the most appropriate region in the Venn diagram.

 $3.14 17 0.\overline{09} 2.121121112 \dots -5^2$

 $\frac{1}{3^{-2}}$ $(-3)^{-2}$ $\sqrt[3]{64}$ 3.15×10^{-3}

 $\sqrt{3}$ $\sqrt{\frac{9}{81}}$ π $0.0\overline{5}$ $5,812,342^{0}$ -1^{9} $\sqrt[3]{25}$ $\frac{22}{7}$ -5.1

2) List the Real numbers from above in the following two ways:

Rational: _____

Irrational:

3) Classify each number as rational or irrational.

$$\pi$$
 5. $\overline{3}$ $\sqrt{36}$

<u> </u>		
Rational	<u>Irrational</u>	

- **4)** How would you classify the number 121?
 - (A) perfect square
 - (B) perfect cube
 - **©** both a perfect square and a perfect cube
 - neither a perfect square nor a perfect cube
- **5)** Approximate the square root or cube root of the following numbers.
 - A) $\sqrt{37}$
- B) $\sqrt[3]{214}$

c) $\sqrt{83}$

D) $\sqrt[3]{-9}$

6) Samantha runs one mile in $10.\overline{2}$ minutes. How can you express the repeating decimal $0.\overline{2}$ as a fraction?

7) What is the side length, s, of the square?

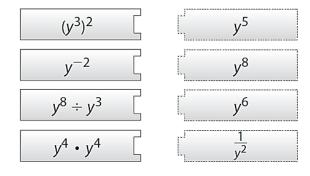
A = 169 m²

8) Taj asked 27 classmates whether they know how to write calligraphy. He used a calculator to compare the number of classmates who said yes to the total number he surveyed. The calculator showed the result as 0.11111111111.

Part A

Write this number as a fraction.

Part B


How many students know how to write calligraphy?

- 9) Solve the equation $x^2 = 26$.
 - **(A)** $x = \pm \sqrt{26}$
 - **B** $x = \sqrt{26}$
 - © $x = \pm 13$
 - ① x = 13
- 11) Evaluate the expression for x = 1 and y = 5.

$$16x^0 + 5x^2 \cdot y^{-1}$$

•

- 10) A cube-shaped box has a volume of 125 cubic inches. If the box is packed full of cubes with edge lengths of 1 inch, how many cubes can fit along one side of the box?
 - A 5 cubes
 - (B) 10 cubes
 - © 25 cubes
 - (D) 125 cubes
 - 12) Draw lines to connect each expression on the left with an equivalent expression on the right.

- **13)** Express the number 3,440,000 in scientific notation.
 - \bigcirc 3.44 \times 10⁻⁶
 - **(B)** 3.44×10^{-5}
 - (C) 3.44×10^5
 - ① 3.44×10^6
- 16) A large oak tree has 2×10^5 leaves during its lifespan. A large forest can have about 5×10^3 oak trees. Approximately how many leaves would be in the forest during the lifespan of those trees?
- notation.

 15)

 16)

Express your answer in scientific

14) Rewrite 3^{-7} using a positive exponent.

15) Find $(1.6 \times 10^7) + (3.8 \times 10^8)$.

- **17)** Circle the numbers that are **written in standard form**, *then write them in Scientific Notation*.
 - 3.24×10^6

7,510,900,000,000

- **18)** Circle the numbers that are **written in Scientific Notation**, *then* <u>write them in standard form</u>.
 - 4,281,000,000,000
- 8.67×10^{-8}

0.00008192

 7.15×10^{-5}

 9.15×10^{7}

0.000000753

- **19)** Write (6.37×10^{-2}) in standard form.
 - A) 0.00637
- C) 637
- B) 0.0637
- D) 63,700
- $\frac{(5.0 \times 10^4)}{(2.5 \times 10^2)}$ **21)** Find the quotient:
 - A) 2.0×10^2
- C) 0.5×10^6
- B) 12.5×10^2
- D) 5.0×10^6
- **23)** Find the difference: $(2.5 \times 10^4) (1.5 \times 10^3)$
 - A) 1.0×10^{1}
- C) 2.35×10^4
- B) 1.0×10^{7}
- D) 2.35×10^7
- **25)** What is (4.01×10^0) written in Standard Form?
 - A) 0.401
- C) 4.01
- B) 4.001
- D) 40.1
- **27)** For which value of k is the equation below true? $4.522.800.000 = 4.5228 \times 10^{k}$
 - A) 5

C)9

B) 8

- D) 10
- **29)** Write the power below using a positive exponent.

$$\frac{1}{6^{-3}}$$

- **20)** Which is the best example of a number written in scientific notation?
 - A) 0.5×10^5
- C) 5.367×10^{-3}
- B) 0.1254
- D) 12.5×10^2
- **22)** Find the product: $(2.1 \times 10^{-3}) * (2.0 \times 10^{2})$
 - A) 4.2×10^{-5}
- C) 4.2×10^{-6}
- B) 4.2×10^6
- D) 4.2×10^{-1}
- **24)** Find the sum: $(3.0 \times 10^4) + (2.5 \times 10^5)$
 - A) 0.5×10^5
- C) 3.25×10^5
- B) 2.8×10^5
- D) 5.5×10^9
- **26)** Which could be the common exponent used for the power of ten when finding the sum of

$$(4.15 \times 10^{-3}) + (5.28 \times 10^{6})$$
?

A) 3

- C) 5.28
- B) 4.15
- D) 6
- **28)** The leading factor of a number written in correct Scientific notation is between which numbers?
 - A) 1 and 10

- C) Both A & B
- B) -1 and -10
- D) None of these
- **30)** Solve the following equations for x.

 - A) $x^2 = 121$ B) $x^3 = -64$