

? Essential Question How can you solve equations with squares and cubes?

EXAMPLE

Solve Equations Involving Perfect Squares

Darius is restoring a square tabletop. He wants to finish the outside edges with a piece of decorative molding. What total length of molding will

Use the formula $A = s^2$ to find each side length. To solve, take the square root of both sides of the equation.

$$A = s^{2}$$

 $25 = s^{2}$
 $\sqrt{25} = \sqrt{s^{2}}$
 $\pm 5 = s$
Because $5^{2} = 5 \times 5 = 25$
and $(-5)^{2} = -5 \times -5 = 25$,
 $s = 5$ and $s = -5$, or $s = \pm 5$.

Since length is positive, each side length of the tabletop is 5 feet. Darius needs 20 feet of decorative molding.

Generalize In general, an equation of the form $x^2 = p$, where p is a positive rational number, has two solutions, $x = \pm \sqrt{p}$. MP.8

Try It!

What is the side length, s, of the square below?

 $A = 100 \text{ m}^2$

10.10=100 -10.-10=100

Each side of the square measures

Convince Me! Why are there two possible solutions to the equation s² = 100? Explain why only one of the solutions is valid in this situation.

EXAMPLE 2

Solve Equations Involving Perfect Cubes

Kyle has a large, cube-shaped terrarium for his iguana. He wants to cover the opening with a square screen. What are the dimensions, s, for the screen?

$$V=s^3$$

$$343 = 5^3$$
 $\sqrt[3]{343} = \sqrt[3]{5^3}$

The value of s is not
$$\pm \sqrt[4]{343}$$
 because $(-7)^3 = -7 \times -7 \times -7$

 $V = 343 \, \text{ft}^3$

Each edge of the terrarium is 7 feet, so the dimensions of the screen are 7 feet

Solve
$$x^3 = 64$$
.

EXAMPLE 3

Solve Equations Involving Imperfect Squares and Cubes

Solve for x.

A.
$$x^2 = 50$$

$$\sqrt{x^2} = \sqrt{50}$$

$$x = \pm \sqrt{50}$$

Because 50 is not a perfect square, write the solution using the square root symbol.

There are two possible solutions, $x = +\sqrt{50}$ and $x = -\sqrt{50}$.

B.
$$x^3 = 37$$

$$\sqrt[3]{x^3} = \sqrt[3]{37}.$$

 $\sqrt[3]{x^3} = \sqrt[3]{37}$. $x = \sqrt[3]{37}$ is an exact $x = \sqrt[4]{37}$ solution of the equation.

There is one possible solution, $x = \sqrt[3]{37}$.

Try It!

a. Solve
$$a^3 = 11$$
.

b. Solve
$$c^2 = 27$$
.

$$\sqrt{c^2} = \sqrt{27}$$

$$|c = \pm \sqrt{27}$$