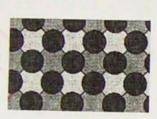
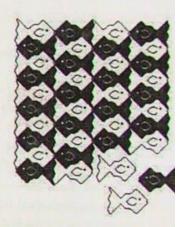
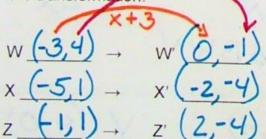

Translational Symmetry

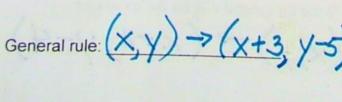


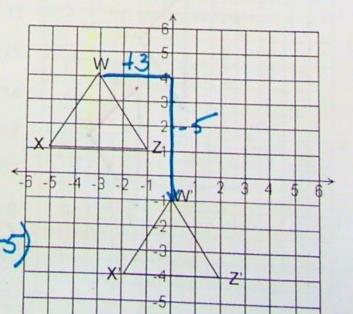

An image has **Translational Symmetry** if it can be divided by straight lines into a sequence of identical figures. Translational symmetry results from moving a figure a certain distance in a certain direction also called translating (moving) by a vector (length and direction).


A tessellation is created when a shape is repeated over and over again covering a plane without any gaps or overlaps.

Another word for a tessellation is a tiling.

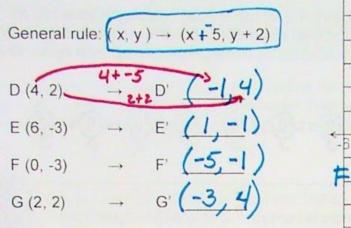






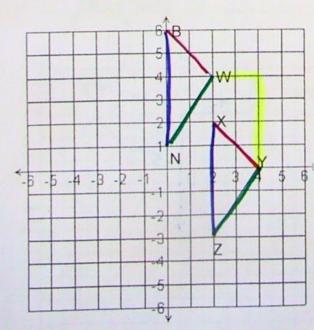
NOTES for Translational Symmetry

Name the coordinates of the image and its translation. State the rule for the transformation.





NOTES for Translational Symmetry, continued

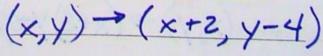

2. The vertices of a polygon are listed. Name the coordinates of the image's translation given the general rule for the transformation. Graph and label the original polygon and Trapezoid its image.

- 3. A point and its image after a translation are given. Write a rule to describe the translation
- a. The translation that takes A(8, -6) to A'(9, -3) $(x, y) \rightarrow (x+1, y+3)$ b. The translation that takes B(2, -10) to B'(2, -12) $(x, y) \rightarrow (x+0, y-2)$

- 4. A translational transformation also results in a congruent figure. Identify the congruent parts for triangle XYZ that was translated 2 units to the left and 4 units up.

$$\overline{XY} \cong \underbrace{BW}$$

$$\overline{YZ} \cong \underbrace{WN}$$


$$\angle W \cong \underbrace{\angle Y}$$

$$\angle N \cong \underbrace{\angle Z}$$

State the coordinates of W and its corresponding vertex:

Write the general rule for the translation

