\qquad

- I can determine an interior angle of a triangle given an interior and exterior angle measurement.
- I can use the angle relationships involving parallel lines and transversals to determine the measures of corresponding angles, alternate interior angles, alternate exterior angles.
- I can apply the volume formulas of right prisms, cylinders, pyramids, cones, and spheres.
- I can apply the formulas for volume to real-world and mathematical problems.

Reflectional Symmetry

An image has Reflectional Symmetry if there is at least one line which splits the image in half so that one side is the mirror image of the other. Reflectional symmetry is also called line symmetry or mirror symmetry because there is a line in the figure where a mirror could be placed, and the figure would look the same.

Think of a figure on a piece of paper, then folding the paper in two so that the two halves match up, or actually placing a mirror on the line of symmetry.

It is possible to have more than one line of reflectional symmetry.

Draw all of the lines of symmetry for each figure. Indicate the number of lines of symmetry for each figure. If the figure does not have reflectional symmetry, write "none."

Notes for Reflectional Symmetry on a Coordinate Grid

The vertices of a polygon are listed. Graph and label each polygon and its image after a reflection over the given line. Name the coordinates of the image. State the rule for the transformation.

1. Reflect over the \mathbf{x}-axis. (The x-axis can also be described as the line $y=0$.)

$$
\begin{aligned}
& A(0,2) \rightarrow \\
& A^{\prime} \\
& B(-2,5) \rightarrow \\
& B^{\prime} \\
& C(-5,1) \rightarrow
\end{aligned}
$$

General rule: \qquad

2. Reflect over the \mathbf{y}-axis. (The y-axis can also be described as the line $x=0$.)

$$
\begin{array}{ll}
\mathrm{E}(1,4) \rightarrow & \mathrm{E}^{\prime} \\
\mathrm{F}(3,-2) \rightarrow & \mathrm{F}^{\prime} \\
\mathrm{G}(5,4) \rightarrow & \mathrm{G}^{\prime} \\
H(3,6) \rightarrow & H^{\prime}
\end{array}
$$

General rule: \qquad

A reflectional transformation results in a congruent figure. All angles and segments maintain the same measurements. Identify the congruent parts for the following triangle that was reflected over the line $y=x$.

$\overline{A B} \cong$ \qquad $\angle A \cong$ \qquad $\overline{B C} \cong$ \qquad $\angle B \cong$ \qquad $\overline{C A} \cong$ \qquad
\qquad
$\triangle A B C \cong$ \qquad
State the coordinates of A and its corresponding vertex:
A: \qquad
\qquad

Write the general rule for a reflection over the line $x=y$

Homework for Reflectional Symmetry

The vertices of a polygon are listed. Graph and label each polygon and its image after a reflection over the given line. Name the coordinates of the image. State the rule for the transformation.

1. Reflect over the \mathbf{y}-axis.

$$
\begin{array}{ll}
W(2,-4) \rightarrow & W^{\prime} \\
X(1,3) \rightarrow & X^{\prime} \\
Y(4,1) \rightarrow & Y^{\prime} \\
Z(5,-2) \rightarrow & Z^{\prime}
\end{array}
$$

General rule: \qquad

2. Reflect over the x-axis.

$$
\begin{array}{ll}
J(-2,1) \rightarrow & J^{\prime} \\
K(1,6) \rightarrow & K^{\prime} \\
L(4,2) \rightarrow & L^{\prime}
\end{array}
$$

General rule: \qquad
3. Reflect over the x-axis.
(The transformed polygon will overlap with the original.)
$\mathrm{D}(-2,1) \rightarrow \mathrm{D}^{\prime}$ \qquad

$$
E(5,2) \rightarrow \quad E^{\prime}
$$

$\mathrm{F}(3,-4) \rightarrow \quad \mathrm{F}^{\prime}$ \qquad

General rule: \qquad

4. Identify the congruent parts for the following triangle that were reflected over the y axis.

$$
\begin{array}{ll}
\overline{A B} \cong & \angle A \cong \\
\overline{B C} \cong & \angle B \cong \\
\overline{C A} \cong & \angle C \cong
\end{array}
$$

$\triangle A B C \cong$ \qquad

Draw all of the lines of symmetry for each figure. If the figure does not have reflectional symmetry, write "none."

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer.
11.

Which of the following shows the image above reflected over the dotted line?
A. (-: B. $\underbrace{\because}$
c. . I D. :-)
12. Use the letter in the box to answer the
following question.

Which shows the letter after it has been FLIPPED ONCE?

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer.
13.

Anna noticed the following sign on the wall

Which shows the sign after it has been flipped across the line?
A.

B.

C.

D.

15.

If trapezoid KLMN shown below is reflected across the x -axis to form trapezoid K'L'M'N', what are the apparent coordinates of M^{\prime} ?

A. $(-4,5)$
B. $(-4,-5)$
C. $(4,-5)$
D. $(4,5)$
14.

Which figure is a reflection of figure P in respect to the x -axis?
A.

B.

c.

D.

16.

Which of the following is a single reflection of figure N over the y -axis to form N^{\prime} ?
A.

B.

c.

D.

Translational Symmetry

An image has Translational Symmetry if it can be divided by straight lines into a sequence of identical figures. Translational symmetry results from moving a figure a certain distance in a certain direction also called translating (moving) by a vector (length and direction).

A tessellation is created when a shape is repeated over and over again covering a plane without any gaps or overlaps.

Another word for a tessellation is a tiling.

NOTES for Translational Symmetry

1. Name the coordinates of the image and its translation. State the rule for the transformation.

\qquad $\rightarrow \quad X^{\prime}$ \qquad
\qquad

General rule: \qquad

NOTES for Translational Symmetry, continued

2. The vertices of a polygon are listed. Name the coordinates of the image's translation given the general rule for the transformation. Graph and label the original polygon and its image.

General rule: $(x, y) \rightarrow(x-5, y+2)$

3. A point and its image after a translation are given. Write a rule to describe the translation.
a. The translation that takes $A(8,-6)$ to $A^{\prime}(9,-3)$
$(x, y) \rightarrow$ \qquad
b. The translation that takes $B(2,-10)$ to $B^{\prime}(2,-12)$

$$
(x, y) \rightarrow
$$

\qquad
4. A translational transformation also results in a congruent figure. Identify the congruent parts for triangle XYZ that was translated 2 units to the left and 4 units up.

$\overline{X Y} \cong$ \qquad $\overline{Y Z} \cong$ $\angle N \cong$ \qquad $\overline{Z X} \cong$ \qquad

$$
\angle B \cong
$$

\qquad $\triangle X Y Z \cong$ \qquad
State the coordinates of W and its corresponding vertex:
W: \qquad
\qquad
Write the general rule for the translation

HOMEWORK for Translational Symmetry

1. Name the coordinates of the image and its translation. State the rule for the transformation.
\qquad
K \qquad $\rightarrow \quad K^{\prime}$ \qquad
L \qquad $\rightarrow \quad$ L' \qquad
M \qquad $\rightarrow \quad M^{\prime}$ \qquad

General rule: \qquad
2. The vertices of a polygon are listed. Name the coordinates of the image's translation given the general rule for the transformation. Graph and label the original polygon and its image.

General rule: $(x, y) \rightarrow(x+4, y-2)$

3. The vertices of a polygon are listed. Name the coordinates of the image's translation given the general rule for the transformation. Graph and label the original polygon and its image.

General rule: $(x, y) \rightarrow(x-6, y)$

4. A point and its image after a translation are given. Write a rule to describe the translation.
a. The translation that takes $A(10,-5)$ to $A^{\prime}(-5,-3) \quad(x, y) \rightarrow$ \qquad
b. The translation that takes $B(2,-3)$ to $B^{\prime}(7,-8) \quad(x, y) \rightarrow$ \qquad
5. Identify the congruent parts for triangle $X Y Z$ that was translated 3 units to the right and 5 units down.

$$
\begin{array}{ll}
\overline{X Y} \cong & \angle X \cong \\
\overline{Y Z} \cong & \angle Y \cong \\
\overline{Z X} \cong & \angle Z \cong
\end{array}
$$

$\triangle X Y Z \cong$ \qquad
State the coordinates of X and its corresponding vertex:
X: \qquad
\qquad
Write the general rule for the translation

Multiple choice: The following are multiple choice questions. Circle the letter next to the
answer.
6. Which pair of shapes shows a translation (slide)?
7. Which shows a slide of

A.

B.

D.

A.

B.

C.

D.

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer.

8 Parallelogram $A B C D$ was translated to parallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

How many units and in which direction were the x-coordinates of parallelogram $A B C D$ moved?
A. 3 units to the right
B. 3 units to the left
C. 7 units to the right
D. 7 units to the left

9 Figure $E F G H$ in the coordinate plane has vertices at $(-5,2),(-5,-2),(-1,-2)$, and (-1, 2).

If the figure is translated 5 units to the right and 2 units up, what are the coordinates of the $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$?
A. $(0,4),(0,0),(4,0),(4,4)$
B. $(-3,7),(-3,3),(1,3),(1,7)$
C. $(-10,0),(-10,4),(-6,-4),(-6,0)$
D. $(-7,-3),(-7,-7),(-3,-7),(-3,-3)$
10. Which shows the translation of pentagon $A B C D E$ two units to the left?
A.

B.

C.

D.

11.

Amy transformed triangle ABC to create triangle RST. State the type of transformation and give the general rule.

Type: \qquad
Rule: \qquad

Seth transformed triangle ABC to create triangle NPQ. State the type of transformation and give the general rule.

Type: \qquad
Rule: \qquad

Name the corresponding parts for the triangles.
For Amy's transformation...
$\overline{A B} \cong$ \qquad $\angle A \cong$ \qquad
$\overline{B C} \cong$ \qquad $\angle B \cong$ \qquad
$\overline{C A} \cong$ \qquad $\angle C \cong$ \qquad
$\triangle A B C \cong$ \qquad
For Seth's transformation...
$\overline{A B} \cong$
$\overline{B C} \cong$ \qquad
$\angle A \cong$ \qquad
$\overline{C A} \cong$
$\angle B \cong$ \qquad
\qquad
$\angle C \cong$ \qquad
$\triangle A B C \cong$ \qquad
12.

Point P has coordinates $(2,5)$. After a translation, the coordinates of its image P^{\prime} are $(4,-1)$.

Which of the following best describes the translation?
A. right 1 unit, down 4 units
B. right 2 units, down 4 units
C. right 2 units, down 6 units
D. right 4 units, down 1 unit
13. Which figure is a reflection of figure P in respect to the x-axis?
A.

B.

c.

D.

Rotational Symmetry

An image has Rotational Symmetry if there is a center point where an object is turned a certain number of degrees and still look the same. A rotation is sometimes called a TURN. These examples have rotational symmetry, but no reflectional symmetry.

How many matches there are as you go once around is called the Order.
Examples of Different Rotational Symmetry Order
Order

$$
360^{\circ} \div 2=180^{\circ}
$$

Order 3

Order/4

$$
360^{\circ} \div 3=120^{\circ}
$$

$$
360^{\circ} \div 4=90^{\circ}
$$

... and there is also Order 5, 6, 7, and ...

... and then there is Order 9,10 , and so on ...

Is there Rotational Symmetry of Order 1 ?
Not really! If a shape only matches itself once as you go around (ie it matches itself after one full rotation) there is really no symmetry at all, because the word "Symmetry" comes from syn- together and metron measure, and there can't be "together" if there is just one thing.

Practice: For each figure state the order and the angle of rotation.
1.
Order: \qquad
2.

Order: \qquad

Angle : \qquad Angle : \qquad

Order: \qquad
Angle : \qquad
4.

Order: \qquad
Angle : \qquad

Notes for Rotational Symmetry on a Coordinate Grid

The vertices of a polygon are listed. Graph and label each polygon and its image after a given rotation. Name the coordinates of the image.

1. Rotate figure STU about the origin 90° clockwise.

Write the general rule:
\qquad

2. Rotate figure EFG about the origin 180°.

$$
\begin{array}{ll}
E(1,4) \rightarrow & E^{\prime} \\
F(3,-2) \rightarrow & F^{\prime} \\
G(5,4) \rightarrow & G^{\prime}
\end{array}
$$

Write the general rule:

Homework for Rotational Symmetry

The vertices of a polygon are listed. Graph and label each polygon and its image after a given rotation. Name the coordinates of the image.

1. Rotate figure WXY about the origin 90° counterclockwise.
$W(2,-4) \rightarrow \quad W^{\prime}$ \qquad
$X(1,3) \rightarrow X^{\prime}$ \qquad
\qquad
Write the general rule:
\qquad

2. Rotate figure JKL about the origin 90° clockwise

$$
\begin{array}{ll}
\mathrm{J}(-2,1) \rightarrow & J^{\prime} \\
\mathrm{K}(1,6) \rightarrow & \mathrm{K}^{\prime} \\
\mathrm{L}(4,2) \rightarrow & \mathrm{L}^{\prime}
\end{array}
$$

Write the general rule:

For each figure state the order and the angle of rotation.
3.
\qquad

Order: \qquad

\qquad
6.
\qquad
7.501
Order: \qquad
Angle : \qquad
8.

\qquad

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer.

9. Irene is making a tessellation using the shape shown below.

Which of the following tessellations can be made using only a clockwise rotation?
A.

B.

c.

D.

10. If triangle $A B C$ is rotated 180 degrees about the origin, what are the coordinates of A^{\prime} ?

A. $(-5,-4)$
B. $(-5,4)$
C. $(-4,5)$
D. $(-4,-5)$
11. Which figure has a line of symmetry and rotational symmetry?
A.

c.

в.

D.

12. Triangle $P Q R$ will be rotated 90° counterclockwise about the origin.

What will be the coordinates of R^{\prime} ?
A. $(4,1)$
B. $(0,4)$
C. $(-1,-4)$
D. $(-1,4)$
13. Which figure below has line symmetry but does not have rotational symmetry?
A.

B.

C.

D.

Plot and label the figure on each coordinate grid. Make the transformation that is indicated. State the transformed coordinates and the general rule.

A ($-2,-1$)
A' \qquad
$B(-2,3) \quad B^{\prime}$ \qquad
C (-5, 3)
C' \qquad
General Rule: \qquad
3. Rotation 90° counterclockwise

$$
\begin{array}{ll}
\mathrm{G}(2,-4) & \mathrm{G}^{\prime} \\
\mathrm{H}(4,3) & \mathrm{H}^{\prime} \\
\mathrm{I}(6,-4) & \mathrm{I}^{\prime}
\end{array}
$$

General Rule: \qquad

D $(-4,5)$
D' \qquad
$E(-6,-4)$
E' \qquad
$F(-2,-1)$
F' \qquad

General Rule: \qquad
4. Rotation 270° clockwise

$J(-1,4) \quad J \prime$ \qquad
$K(-6,1) \quad K^{\prime}$ \qquad

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer.

5. The figure below depicts a coordinate plane, rectangle PQRS, and the image of rectangle PQRS after a transformation. Point P^{\prime} is the image of point P, Q^{\prime} is the image of Q, R^{\prime} is the image of R, and S^{\prime} is the image of S.

Which transformation produced the image $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$?
A. a 180-degree counterclockwise rotation about the point $(0,0)$
B. a translation of four units to the right
C. a 90-degree counterclockwise rotation about the point $(0,0)$
D. a reflection over the y-axis
6. Betty drew the figure shown below.

Betty's Figure

Which of the following shows Betty's figure after it has been rotated 90° clockwise about point P ?
A.

B.

C.

D.

7. Which diagram below best shows a rotation of the pre-image to the image?
A.

c.

B.

D.

8. In the graph below, figure M was rotated clockwise about the origin to generate figure T.

What was the angle of rotation of figure M about the origin?
A. 90°
B. 180°
C. 270°
D. 360°

Homework is continued on the next page.
9. A polygon has been rotated about the origin. Which statement must be true?
A. The lengths of the sides are doubled.
B. The area of the polygon did not change.
C. The coordinates of the vertices did not change.
D. The area of the polygon is 4 Times its original area.
10. The following figure is to be rotated 90° clockwise.

What will the figure look like after the rotation?
A.

B.

C.

D.

11. Identify each shape as translation, rotation, and reflection.

A transformation in which a polygon is enlarged or reduced by a given factor around a given center point.

Dilation is where the polygon grows or shrinks but keeps the same overall shape. It's a little like zooming in or out on a camera.

The transformed figure is called the dilated image of the original

Scale factor

The amount by which the image grows or shrinks is called the "Scale Factor".

- If the scale factor is say 2, the image is enlarged to twice the size of the original.
- If it is 0.5 , the image is reduced to half the size.
- When the scale factor is 1 , the image is the exact same size as the original.

Remember: In dilation, multiply the dimensions of the original by the scale factor to get the dimensions of the image.

Original and image are similar

In dilation, the image and the original are similar, in that they are the same shape but not necessarily the same size. They are not congruent because that requires them to be the same shape and the same size, which they are not (unless the scale factor happens to be 1.0).

NOTES for Dilations

1. Dilate figure $W X Y$ by a scale factor of 2.

Plot and label the original and the dilated figure.

$\mathrm{W}(-1,2)$	\rightarrow	W^{\prime}
$\mathrm{X}(-2,-3)$	\rightarrow	X^{\prime}
$\mathrm{Y}(2,-3)$	\rightarrow	Y^{\prime}

Find the area of the original figure: \qquad

Find the area of the dilated figure: \qquad

NOTES for Dilations

2. Dilate figure $A B C D$ by a scale factor of $\frac{1}{3}$. Plot and label the original and the dilated figure.
$A(-3,6) \quad \rightarrow \quad A^{\prime}$ \qquad
$B(-9,-9) \quad \rightarrow \quad B^{\prime}$
$C(6,-9) \quad \rightarrow \quad C^{\prime}$ \qquad
$D(3,6) \quad \rightarrow \quad D^{\prime}$ \qquad

Find the area of the original figure: \qquad

Write a general rule for the dilation:
Find the area of the dilated figure: \qquad

State the scale factor of the following dilations:
3. $(2,4) \rightarrow(10,20)$ \qquad 4. $(-15,27) \rightarrow(-5,9)$ \qquad 5. $(3,7) \rightarrow(12,28)$
\qquad
Write the general rule for the transformation.
6. $(14,6) \rightarrow(7,3)$ \qquad 7. $(-1,3) \rightarrow(-5,15)$ \qquad
Name the scale factor for the folowing dilations.

Homework for Dilations

1. Dilate figure $W X Y Z$ by a scale factor of 3 . Plot and label the original and the dilated figure.

$\mathrm{W}(0,3)$	\rightarrow	W^{\prime}
$\mathrm{X}(2,3)$	\rightarrow	X^{\prime}
$\mathrm{Y}(3,-3)$	\rightarrow	Y^{\prime}
$\mathrm{Z}(-3,-3)$	\rightarrow	Z^{\prime}

Find the area of the original figure: \qquad

Write a general rule for the dilation:
Find the area of the dilated figure: \qquad
2. Dilate figure $A B C$ by a scale factor of $\frac{1}{2}$. Plot and label the original and the dilated figure.

$\mathrm{A}(-10,8)$	\rightarrow	A^{\prime}
$\mathrm{B}(6,8)$	\rightarrow	B^{\prime}
$\mathrm{C}(6,-10)$	\rightarrow	C^{\prime}

Find the area of the original figure: \qquad

Find the area of the dilated figure: \qquad

State the scale factor of the following dilations:

3. $(3,4) \rightarrow(12,16)$ \qquad 4. $(-15,50) \rightarrow(-3,10)$ \qquad 5. $(1,9) \rightarrow(6,54)$ \qquad

Write the general rule for the dilation.
6. $(21,6) \rightarrow(7,2)$ \qquad
7. $(2,15) \rightarrow(4,30)$ \qquad
8. Draw the dilation image of triangle $\boldsymbol{A B C}$ with the center of dilation at the origin and a scale factor of 2. (Hint: write down the coordinates first.)

Is the dilation an enlargement or reduction?
9. Draw the dilation image of pentagon $A B C D E$ with the center of dilation at the origin and a scale factor of $\frac{1}{3}$. (Hint: write down the coordinates first.)

Is the dilation an enlargement or reduction?

Multiple choice: The following are mu Itiple choice questions. Circle the letter next to the answer.
10. Figure S is the result of a dilation of Figure T.

What is the scale factor of the dilation?
11. A triangle has the following vertices: $(-1,1),(6,-2)$, and $(3,5)$. If the triangle undergoes a dilation with a scale factor of 3 , what will be the vertices of the image?
A. $(-3,3),(18,-6),(9,15)$
B. $(3,3),(18,6),(9,15)$
C. $(-3,3),(18,6),(9,15)$
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. 2
D. 3
D. $(3,3),(18,-6),(9,15)$

Dilations and Similar Figures

Under a transformation of a dilation, a figure will be similar to the pre-image. This

 means...- the angle measures will remain the same (be congruent)
- parallel lines remain parallel

Note:
\cong means congruent to
~ means similar to

- BUT lengths of segments are NOT congruent, but be in equal ratio

Triangle ABC was dilated by a factor of 2 to create triangle XYZ

$\triangle A B C \sim \triangle X Y Z$
$\overline{C A}=4 u n i t s$
$\overline{X Z}=$ \qquad units
$\overline{B C}=3$ units
$\overline{Y Z}=$ \qquad units
$\overline{A B}=5$ units
$\overline{X Y}=$ \qquad units

Name the congruent angles.
$\angle A \cong$ \qquad $\angle B \cong$ \qquad $\angle C \cong$ \qquad
Notice the ratio of all the segment measures remains the same.

Parallelogram QRST was dilated by a scale factor of $\frac{1}{3}$. Fill in the missing values.
Parallelogram QRST ~ Parallelogram \qquad

$\overline{Q R}=$ \qquad units
$\overline{T S}=$ \qquad units
$\overline{Q T} \approx 16$ units
$\overline{S R} \approx 16$ units
$\overline{A X}=$ \qquad units
$\overline{H F}=$ \qquad units
$\overline{A H} \approx$ \qquad units
$\overline{F X} \approx$ \qquad units

Name the congruent angles in the smaller parallelogram.
$\angle Q \cong$ \qquad $\angle R \cong$ \qquad $\angle S \cong$ \qquad $T \cong$ \qquad

If $\overline{Q R} \| \overline{T S}$, then $\overline{A X} \| \overline{H F}$. Therefore if $\overline{Q T} \| \overline{R S}$, then name two other parallel segments.

Dilate figure $A B C$ by a scale factor of $\frac{3}{2}$.
Plot and label the original and the dilated figure.

$\mathrm{A}(-2,0)$	\rightarrow	A^{\prime}
$\mathrm{B}(4,2)$	\rightarrow	B^{\prime}
$\mathrm{C}(-4,-4)$	\rightarrow	C^{\prime}

State the general rule: \qquad

Homework

1) Dilate figure $A B C$ by a scale factor of 2. Plot and label the original and the dilated figure.

$\mathrm{A}(-2,1)$	\rightarrow	A^{\prime}
$\mathrm{B}(-2,3)$	\rightarrow	B^{\prime}
$\mathrm{C}(3,2)$	\rightarrow	C^{\prime}

State the

 general rule: \qquad
2) Dilate figure $A B C$ by a scale factor of $\frac{1}{2}$. Plot and label the original and the dilated figure.

$\mathrm{A}(-10,8)$	\rightarrow	A^{\prime}
$\mathrm{B}(-8,6)$	\rightarrow	B^{\prime}
$\mathrm{C}(-6,-10)$	\rightarrow	C^{\prime}

State the general rule:

3) Dilate figure $A B C$ by a scale factor of $\frac{2}{3}$. Plot and label the original and the dilated figure.

$$
A(-12,9) \quad \rightarrow \quad A^{\prime}
$$

$$
\mathrm{B}(9,6) \quad \rightarrow \quad \mathrm{B}^{\prime} \quad
$$

$$
C(6,-12) \quad \rightarrow \quad C^{\prime}
$$

State the

 general rule: \qquad

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer.

1. A dilation with center P maps the rectangle $R S T U$ to the rectangle $R^{\prime} S^{\prime} T^{\prime} U^{\prime}$ as shown below.

What is the scale factor of this dilation?
A. 2
B. 3
C. 4
D. 9
2. Which of these transformations can change the area of a polygon?
A. translation
B. rotation
C. reflection
D. dilation
~~Unit 7, Page 27~~
3. Look at the figure on the grid below.

What is the perimeter of the figure after it is dilated (magnified) by a scale factor of 3 ?
A. 6 centimeters
B. 21 centimeters
C. 36 centimeters
D. 54 centimeters
4. Figure S is the result of a dilation of Figure T.

What is the scale factor of the dilation?
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. 2
D. 3
5. Rhombus PQRT is shown

$P^{\prime} Q^{\prime} R^{\prime} T^{\prime}$ is the image produced by dilating $P Q R T$ by a scale factor of 4 . What is the length of the diagonal $P^{\prime} R^{\prime}$?
A. 2 units
B. 8 units
C. 12 units
D. 32 units
6. In the figure shown below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image produced by applying a dilation to $\triangle A B C$.

What is the scale factor for this dilation?
A. $\frac{1}{3}$
B. $\frac{2}{5}$
C. $\frac{1}{2}$
D. $\frac{5}{2}$
7. A point has the coordinates $(4,8)$. The point will be dilated by a scale factor of 2 . What will be the coordinates of the image point?
A. $(6,8)$
B. $(8,16)$
C. $(24,28)$
8. Triangle $A B C$ has vertices at $A(2,2), B(2,7)$, and $C(6,3)$. This triangle is dilated by a scale factor of 3 . What is the location of point C^{\prime} ?
A. $(2,1)$
B. $(6,6)$
C. $(6,21)$
D. $(18,9)$
9. The vertices of a rectangle are $(0,0),(0,4),(2,4),(2,0)$. Which of the following points is a vertex for the image produced by a dilation with a scale factor of $\frac{1}{2}$?
A. $(0,3)$
B. $(0,2)$
C. $(0,1)$
D. $(2,1)$
~~Unit 7, Page $29 \sim \sim$
10. What is the perimeter of a triangle whose dimensions are three times the size of $\triangle P Q R$?

A. 23 ft
B. $\quad 27.1 \mathrm{ft}$
C. 69 ft
D. 81.3 ft
11. Sonya plans to use a copy machine to dilate the sign

DO NOT

ENTER
If she uses a scale factor of $\frac{1}{4}$, which statement describes how the sign's diameter will change after the dilation?
A. The diameter will be 4 times longer.
B. The diameter will be $\frac{1}{4}$ as long.
C. The diameter will be 2 times longer.
D. The diameter will be $\frac{1}{2}$ as long.
12. $\triangle G H J$ with vertices $G(-2,4), H(3,6)$, and $J(3,-2)$ is dilated by a factor of $\frac{1}{3}$. What are the coordinates of the vertex of the image $\Delta G^{\prime} H^{\prime} J^{\prime}$ that lies in the second quadrant?
A. $\left(\frac{-7}{3}, \frac{13}{3}\right)$
B. $\left(\frac{-2}{3}, \frac{4}{3}\right)$
C. $\left(1, \frac{-2}{3}\right)$
D. $(1,2)$
13. $\triangle G H I$ will be dilated by a scale factor of 3 , resulting in $\triangle G^{\prime} H^{\prime} I$. What rule describes this transformation?
A. $\left(x^{\prime}, y^{\prime}\right)=\left(\frac{1}{3} x, \frac{1}{3} y\right)$
B. $\left(x^{\prime}, y^{\prime}\right)=(3 x, 3 y)$
C. $\left(x^{\prime}, y^{\prime}\right)=(x+3, y+3)$
D. $\left(x^{\prime}, y^{\prime}\right)=(x-3, y-3)$
14. $\triangle X Y Z$ is dilated by a factor of $\frac{1}{2}$. What is the ratio of the area of $\triangle X Y Z$ to the area of its image, $\Delta X^{\prime} Y^{\prime} Z^{\prime}$?
A. $4: 1$
B. $2: 1$
C. $1: 2$
D. $1: 4$

Combined Transformations

A combined transformation is just a series of two or more transformations performed on the same figure.

EXAMPLES of Double Transformations

1. Using triangle JKL, find each point of reflection over the y-axis and then a translation up 5 units.
\qquad J^{\prime} \qquad J" \qquad
\qquad K^{\prime} \qquad K" \qquad
L \qquad L' \qquad L" \qquad
Draw triangle J'K'L' and J"K"L"

2. Using figure PQR, find each point for a rotation 180° about the origin and a translation right 5 units and up 1 units.
\qquad P' \qquad P" \qquad
Q \qquad

Q' \qquad
Q" \qquad

R \qquad R^{\prime} \qquad R" \qquad
Draw triangle P'Q'R' and P"Q"R"

Homework on Combined Transformations

1. Using figure JKLM, find each point for a reflection over the x-axis and a translation down 3 units.
\qquad
\qquad J" \qquad
K \qquad K^{\prime} \qquad K" \qquad
\qquad L' \qquad L" \qquad M
M^{\prime} \qquad M"

Draw figure J'K'L'M' and J"K"L"M"

Find the area of figure JKLM. Show all work.

Area: \qquad
2. Using figure $A B C$, find each point for a translation left 2 and down 3 and then a rotation of 90° counterclock wise.
\qquad A' \qquad A" \qquad
B \qquad
B' \qquad
B" \qquad

C \qquad
C' \qquad

C" \qquad

Draw triangle $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C "$

Find the area of figure $A B C$. Show all work.

Area: \qquad

Multiple choice: The following are multiple choice questions. Circle the letter next to the answer

3. Triangle RST is shown in the coordinate plane.

What are the coordinates of $R^{\prime} S^{\prime} T^{\prime}$ if the figure is reflected over the x-axis and translated down two units?
A. $(1,-6),(1,-9),(6,-9)$
B. $(3,4),(3,7),(8,7)$
C. $(1,2),(1,5),(6,5)$
D. $(3,2),(3,5),(8,5)$
4. Which figure shows the flag on the left after it has been flipped across the line and then rotated 90° clockwise?
A.

B.

C.

D.

5. $\triangle A B C$ and $\triangle D E F$ are shown on the grid below.

Which of the following transformations will map $\triangle A B C$ onto $\triangle D E F$?
A. Reflect $\triangle A B C$ over the y-axis and shift up 6 spaces.
B. Reflect $\triangle A B C$ over the x-axis and shift up 6 spaces.
C. Reflect $\triangle A B C$ over the y-axis and shift down 6 spaces.
D. Reflect $\triangle A B C$ over the y-axis, reflect over the x-axis, and shift down 4 spaces.
6. Three transformations will be performed on triangle $A B C$. Which set of transformations will always produce a congruent triangle?
A. dilation, rotation, translation
B. reflection, dilation, translation
C. rotation, reflection, dilation
D. rotation, translation, reflection
7. A shape was moved from Position A to Position B, as shown below.

Which of the following best describes how the shape was moved from Position A to Position B ?
A. flipped over the line, then slid up
B. flipped over the line, then slid down
C. flipped over the line, then turned 90° clockwise
D. flipped over the line, then turned 90° counterclockwise
8. Look at Shape G and Shape H on this grid.

Which transformations will show that Shape G is congruent to Shape H?
A. Translate Shape G right 8 units and then reflect it across the y-axis.
B. Translate Shape G right 6 units and then reflect it across the x-axis.
C. Translate Shape G right 8 units and then reflect it across the x-axis.
D. Translate Shape G up 6 units and then reflect it across the y-axis.
9.

Figure K^{\prime} is the result of a sequence of transformations of Figure K. Which of the following does not describe a correct possible sequence of transformations?
A. a translation of Figure K down 5 units, then a translation to the left 5 units
B. a reflection of Figure K across the x-axis, then a translation to the left 5 units
C. a reflection of Figure K across the y-axis, then a translation down 4 units
D. a reflection of Figure K across the x-axis, then a reflection across the y-axis
10. Look at Figure P and Figure Q .

Which motion or motions will result in Figure \mathbf{P} exactly covering Figure Q?
A. slides only
B. turns only
C. flips and turns only
D. flips and slides only

Vertical, Complementary, and Supplementary Angles

When two lines intersect, two pairs of VERTICAL ANGLES are formed. Vertical angles are not adjacent. Vertical angles are located across from each other, they share a common vertex, and the sides of the angles are composed of opposite rays.

Pairs of vertical angles always have the same measure. Vertical angles are congruent (symbol \cong) Congruent means they have the \qquad
\qquad .

In the diagram, name the second angle in each pair of vertical angles.

1) $\measuredangle \mathrm{YPV}$ \qquad 4) $\Varangle \mathrm{VPT}$ \qquad
2) $\Varangle \mathrm{QPR}$ \qquad
3) $\Varangle \mathrm{RPT}$ \qquad
4) $\Varangle \mathrm{SPT}$
\qquad 6) $\Varangle \mathrm{VPS}$ \qquad

Two angles are complementary if the sum of their angles measure 90°.
Two angles are supplementary if the sum of their angles measure 180°. Complementary and supplementary angle pairs may be adjacent, but do not need to be.
PRACTICE: Calculate the measure of each unknown angle

Review: Lines and Angles

Notes: Identify each type of triangle by its angles and by its sides

By

 sides: \qquad By angles: \qquad

By sides: \qquad By angles: \qquad

By sides: \qquad By angles: \qquad

Part 1: Find the measure of the angles below.

1) What is the measure of $\Varangle D R A$? \qquad
2) What is the measure of $\Varangle C R F$? \qquad
3) What is the measure of $\Varangle A R B$? \qquad
4) What is the measure of $\Varangle C R B$? \qquad
5) What is the measure of $\Varangle \mathrm{KRC}$? \qquad

Use the following diagram for questions 6-14.

6) Which angle is supplementary angle to $\Varangle \mathrm{EDF}$? \qquad
7) What is the measure of $\Varangle \mathrm{GDF}$? \qquad 13) What is the measure of $\Varangle C A D$? \qquad
8) Which two angles are right angles? \qquad and \qquad
9) What is the measure of $\Varangle E D F$? \qquad 14) Which angles are adjacent to \Varangle EDA?
10) Which angle is adjacent to $\Varangle \mathrm{BAD}$? \qquad
\qquad and \qquad
11) Which angle is a complementary angle to $\Varangle \mathrm{HAD}$? \qquad
12) What is the measure of $\Varangle \mathrm{HAB}$? \qquad

~ U Unit 7, Page $36 \sim \sim$

Part 2: Use what you know about complementary and supplementary angles to find the measures of the following angles.

1) $m \Varangle \mathrm{RMS}=$ \qquad
2) $\mathrm{m} \Varangle \mathrm{VMT}=$ \qquad
3) $\mathrm{m} \Varangle \mathrm{QMN}=$ \qquad
4) $m \Varangle W P Q=$ \qquad

5) $\mathrm{m} \Varangle \mathrm{AJK}=$ \qquad
6) $\mathrm{m} \Varangle \mathrm{CKD}=$ \qquad
7) m Ł $\mathrm{FKH}=$ \qquad
8) $\mathrm{m} \Varangle \mathrm{BLC}=$ \qquad

Part 3: Classify each triangle two ways.

1) \qquad
(1)

(3)

(5)

(6)
5.1 km

2) \qquad
\qquad
3) \qquad
4) \qquad
\qquad
5)

\qquad
6) \qquad

Interior Angles of a Triangle

FACT: The three interior angles of a triangle always add up to \qquad ${ }^{0}$.

Write an equation and solve to find the missing angle in the triangle.

Exterior Angles of a Triangle

The exterior angle of a triangle is always equal to the sum of the opposite interior angles.
Example 1: Examine the figure below. Find the measure of the missing angle.

Example 2: Find the measure of $\Varangle x$ and $\Varangle y$.

Step 1: Use the rule for exterior angles to write equation to solve for x .

Step 2: The sum of the interior angles of a triangle equals 180°, and $\Varangle B C A$ supplements $\Varangle B C D$, so either

SUM of INTERIOR
ANGLES

SUPPLEMENTAL
ANGLES

Write an equation and solve to find the value of the variables.

Write an equation using the sum of the interior angles and solve to find the value of the variables.

Write an equation and solve to find the value of the variables.

The following problems are multiple choice. Circle the letter indicating the best answer for each question.
10) In the figure below, what is $m \angle D A C$?

A. 47°
B. 57°
C. 90°
D. 137°

In the figure below, $\overleftrightarrow{C D}$ intersects $\overleftrightarrow{A B}$ at $F, m \angle C F B=50^{\circ}$, and $\angle E F A \cong \angle A F D$. What is $m \angle E F C$?

A. 40°
B. 50°
C. 70°
D. 80°

Corresponding, Alternate Interior, and Alternate Exterior Angles

If two parallel lines are intersected by another line, how many angles are formed?

$\overline{P Q} \| \overline{R S}$
$\overline{T U}$ is a transversal

The extra arrows on two of the lines mean they are \qquad .

The line that intersects the two lines is called a \qquad .

The number of angles formed is \qquad -.

The angles formed when parallel lines are cut by a transversal line have special relationships and are named according to those relationships with one another.

CORRESPONDING ANGLES

Definition:

Name the corresponding angles for the following.

1) $\Varangle 1$ corresponds with \Varangle \qquad
2) $\Varangle 2$ corresponds with \Varangle \qquad
3) $\Varangle 3$ corresponds with \Varangle \qquad
4) $\Varangle 4$ corresponds with \Varangle \qquad

If two angles are corresponding angles, then they are: \qquad

ALTERNATE INTERIOR ANGLES

Definition:

Name the alternate interior angle for the following angles.

1) $\Varangle 3$ is an alternate interior angle with \Varangle \qquad
2) $\Varangle 4$ is an alternate interior angle with \Varangle \qquad
If two angles are alternate interior angles,
then they are: \qquad

ALTERNATE EXTERIOR ANGLES

Definition:

Name the alternate exterior angle for the following angles.

1) $\Varangle 1$ is an alternate exterior angle with \Varangle \qquad
2) $\Varangle 2$ is an alternate exterior angle with \Varangle \qquad

If two angles are alternate exterior angles, then they are: \qquad

Look at the diagram below. For each pair of angles, state whether they are corresponding (C), alternate interior (AI), alternate exterior (AE), vertical (V), or supplementary (S).

11) If $m \not \leq s=110^{\circ}$, write the measure of the remaining angles in the diagram.

Finding Unknown Angle Measures

We will use the angle relationships that are formed when two parallel lines are intersected by a transversal to find the measures of missing angles. All of the angle relationships will either be supplementary or congruent.

Example A: The pair of angles are either vertical angles, alternate interior angles, alternate exterior angles, or corresponding angles; so they are congruent. All you have to do is set up and solve an equation where the expressions are congruent. Once you have solved for x , substitute that value back into each expression to find the measure of each angle.

Relationship: \qquad
Equation: \qquad

$$
x=\ldots \Varangle A B G=\ldots \Varangle C B D=
$$

$$
x=\ldots \Varangle A B D=\ldots _H F A=
$$

Relationship: \qquad
Equation: \qquad

Example B: Each pair of angles are supplementary to each other, which means the angles add up to 180°. All you have to do is set up and solve an equation where the expressions add up to equal 180°. Once you have solved for x, substitute that value back into each expression to find the measure of each angle.

Independent Practice:

Part 1: For each pair of angles, state whether they are corresponding (C), alternate interior (AI), alternate exterior (AE), vertical (V), or supplementary (S) angles.

1) $\Varangle 1$ and $\Varangle 4$ \qquad 6) $\Varangle 6$ and $\Varangle 5$ \qquad
2) $\Varangle 2$ and $\Varangle 6$ \qquad 7) $\Varangle 2$ and $\Varangle 7$ \qquad
3) $\Varangle 1$ and $\Varangle 3$ \qquad
4) $\Varangle 1$ and $\Varangle 2$ \qquad
5) $\Varangle 5$ and $\Varangle 8$ \qquad
6) $\Varangle 4$ and $\Varangle 5$ \qquad

Part 2: Parallel lines a and b when cut by transversals m and n. Find all of the unknown angle measures.

Part 1: Find the measure of each missing angle in the parallel lines and transversals. Each pair of angles is either supplementary or congruent (vertical angles, alternate interior angles, alternate exterior angles, or corresponding angles). State the relationship, set up an appropriate equation and solve for x . Once you've solved for x , substitute that value back into each expression to find the measure of each angle.

Relationship: \qquad
Equation: \qquad
Solve:
$x=\ldots \Varangle E F B=$ \qquad $\Varangle G F H=$ \qquad
2)

3)
\qquad

Relationship:
$x=$ \qquad $\Varangle E F B=$ \qquad
Equation:
Solve:
\qquad
4)

5)

7, Page 45 ~
Relationship: \qquad
Equation: \qquad
Solve:
$\Varangle B F H=$ \qquad
6)

Relationship: \qquad
Equation: \qquad
Solve:
$x=\ldots \Varangle C B A=$ \qquad $\Varangle G F H=$ \qquad
7)

8)

Relationship: \qquad
Equation: \qquad
Solve:

$$
x=\ldots \Varangle C B A=\ldots \Varangle G F H=
$$

