

Graphing Quadratic Functions, Using the Zeroes (x-intercepts)

EXAMPLES

1) $y=x^{2}-9$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad , and $c=$ \qquad -.
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad
g) Sketch the graph.
2) $6 x-x^{2}+y=8$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad , and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad

h) x-intercepts: \qquad
g) Sketch the graph

Practice

Sketch each graph.

1) $y=x^{2}-2 x-8$
2) $y=-x^{2}-4 x+5$
3) $y=x^{2}+x-6$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad
a) Standard Form:
b) $a=$ \qquad $b=$ \qquad , and $c=$ \qquad -.
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad
a) Standard Form: \qquad
b) $a=\ldots, b=\ldots$, and $c=$ -.
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad

4) $x^{2}+7-8 x=y$
5) $y=-12-x^{2}+8 x$
a) Standard Form: \qquad
b) $a=$ \qquad , $b=$ \qquad and $c=$ \qquad -.
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad
6) $4 x+3+x^{2}=y$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad

Graphing Quadratic Functions; Using a Table

 EXAMPLESSketch each graph.

1) $y+x^{2}=8 x-4$
a) Standard Form: \qquad
b) $a=$ \qquad , $b=$ \qquad and $c=$ \qquad
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with additional points. (You choose the x-values.)

x	$f(x)=$	$f(x)$

2) $-x^{2}+y+2=-6 x$
a) Standard Form:
b) $a=$ \qquad , $b=$ \qquad and $c=$ \qquad -.
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with additional points.
(You choose the x-values.)

x	$f(x)=$	$f(x)$

Assignment

1) $y-x^{2}=-2 x+5$

Sketch each graph.
a) Standard Form:
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with two additional points. (You choose the x-values.)

x	$f(x)=$	$f(x)$

2) $y-x^{2}=6+8 x$
a) Standard Form:
b) $a=$ \qquad $b=$ \qquad , and $c=$ \qquad
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with two additional points. (You choose the x -values.)

x	$f(x)=$	$f(x)$

a) Standard Form:
b) $a=$ \qquad $b=$ \qquad , and $c=$ \qquad
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with two additional po (You choose the x-values.)

x	$f(x)=$	$f(x)$

3) $y=-3 x^{2}+4+6 x$

4) $\frac{1}{2} x^{2}+4 x=y-1$
a) Standard Form:
b) $a=$ \qquad $b=$ \qquad , and $c=$ \qquad -
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with two additional points. (You choose the x-values.)

x	$f(x)=$	$f(x)$

5) $y+3=8 x+2 x^{2}$
a) Standard Form:
b) $a=$ \qquad $b=$, and $c=$ \qquad
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with two additional points. (You choose the x-values.)

x	$f(x)=$	$f(x)$

6) $y+x^{2}=7-4 x$
a) Standard Form:
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with two additional point (You choose the x-values.)

Review:

Graph the following quadratic function using the axis of symmetry, vertex and intercepts.

1) $y=-6+4 x+2 x^{2}$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad

h) x-intercepts: \qquad
g) Sketch the graph. Label the axis of symmetry, vertex and intercepts
2) Graph the following quadratic function using the axis of symmetry, vertex and 2 other points.
$x^{2}-1-y=-6 x$
a) Standard Form: \qquad
b) $a=$ \qquad , $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with additional points.
(You choose the x-values.)

x	$f(x)=$	$f(x)$

Using Factoring to Solve Problems

Projectiles, Finding Time

For each problem, define the variable, draw a diagram as indicated, write an equation(s), and solve.

EXAMPLES

When height, h, is in feet: $h=-16 t^{2}+v t+c$
When height, h, is in meters: $h=-4.9 t^{2}+v t+c$
t is the time in motion (in seconds)
v is the initial upward velocity (in $\mathrm{ft} / \mathrm{sec}$ or $\mathrm{m} / \mathrm{sec}$)
c is the initial height

1) A diver springs from the edge of a cliff 80 ft above the ocean with an initial velocity of $8 \mathrm{ft} / \mathrm{sec}$. How long will it take the diver to reach the water?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
2) An object is launched at 19.6 meters per second $(\mathrm{m} / \mathrm{s})$ from a 58.8 -meter tall platform. When does the object strike the ground?
Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution:

\qquad
3) At a pep rally, cheerleaders use a slingshot to launch small, foam basketballs into the crowd. The release point is 5 ft above the gym floor, and the balls are shot with an initial upward velocity of $52 \mathrm{ft} / \mathrm{s}$. Suppose a ball is caught 17 ft above the floor on its way down by a student in the stands. How long is the ball in the air?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
4) A trebuchet launches a projectile on a parabolic arc at a velocity of $147 \mathrm{~m} / \mathrm{s}$. Determine when the projectile will first reach a height of 980 m , and how many seconds later will it again be 980 m .

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad

ASSIGNMENT

1) Bryson throws a baseball into the air with an initial velocity of $46 \mathrm{ft} / \mathrm{s}$. He releases the ball 6 feet off of the ground. When will the ball hit the ground?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
2) An object is launched from ground level directly upward at $39.2 \mathrm{~m} / \mathrm{s}$. For how long is the object at or above a height of 34.3 meters?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
3) At a pep rally, cheerleaders use a slingshot to launch t-shirts into the crowd. The release point is 5 ft above the gym floor, and the t-shirts are shot with an initial upward velocity of $36 \mathrm{ft} / \mathrm{s}$. Suppose a t-shirt is caught 13 ft above the floor on its way down by a student in the stands. How long is the t-shirt in the air?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
4) A diver is standing on a platform 24 ft . above the pool. He jumps from the platform with an initial upward velocity of $8 \mathrm{ft} / \mathrm{s}$. How long will it take for him to hit the water?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
5) An amateur rocketry club is holding a competition. There is a cloud cover at 1470 m . If a rocket is launched with a velocity of $196 \mathrm{~m} / \mathrm{s}$, determine how long the rocket is out of sight.

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
6) A circus acrobat is shot out of a cannon with an initial upward speed of $50 \mathrm{ft} / \mathrm{s}$. If the acrobat leaves the cannon 4 ft above the ground, how long will it take him to reach a net that is 10 ft above the ground?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
7) A trapeze artist is shot out of a cannon with an initial upward speed of $34 \mathrm{ft} / \mathrm{sec}$. If the acrobat leaves the cannon 4 ft above the ground, how long will it take her to reach a net that is 8 ft above the round?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
8) An arrow is shot upward with an initial speed of $34.3 \mathrm{~m} / \mathrm{s}$. When will it be at a height of 49 m ?

Variable: \qquad

Solution: \qquad
11) Graph the following quadratic function using the axis of symmetry, vertex and intercepts.
$y=-5+4 x+x^{2}$
a) Standard Form: \qquad
b) $a=$ \qquad , $b=$ \qquad , and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad
g) Sketch the graph.

12) Graph the following quadratic function using the axis of symmetry, vertex and 2 other points.
$\frac{1}{2} x^{2}-10+y=3 x$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with additional points.
(You choose the x-values.)

x	$f(x)=$	$f(x)$

Using Factoring to Solve Problems

For each problem, define the variable, draw a diagram as indicated, write an equation(s), and solve.

Projectiles, Finding Maximum Height

The maximum height will be at the vertex of the graph, where $x=$ time and $y=$ height. $\boldsymbol{x}=\frac{-\boldsymbol{b}}{2 \boldsymbol{a}}$ When height, h, is in feet: $h=-16 t^{2}+v t+c$
t is the time in motion (in seconds)
v is the initial upward velocity (in $\mathrm{ft} / \mathrm{sec}$ or $\mathrm{m} / \mathrm{sec}$) c is the initial height

EXAMPLES

1) Chris jumped off of a cliff with an initial velocity of $16 \mathrm{ft} / \mathrm{s}$ into the ocean in Acapulco while vacationing with some friends. The cliff was 480 ft above the ocean.

Sketch the graph of Eli's jump as a function of his height over time. Label all important information as you answer each question.

Function $\mathrm{h}(\mathrm{t})=$ \qquad
\qquad $b=$ \qquad $\mathrm{c}=$ \qquad
a) How long did it take for Eli to reach his maximum height? Variable: \qquad Equation: \qquad

Solution: \qquad
b) What was the highest point that Eli reached? Variable: \qquad Equation: \qquad

Solution: \qquad
c) Eli hit the water after how many seconds? Variable: \qquad Equation: \qquad

Solution: \qquad
2) Some fireworks are fired vertically into the air from the ground at an initial velocity of $\mathbf{8 0}$ feet per second. When the highest point is reached by the firework -it explodes. Function $\mathrm{h}(\mathrm{t})=$ \qquad
a= \qquad

$$
b=
$$

C $=$ \qquad
a) After how many seconds does the firework explode? Variable: \qquad Equation: \qquad

Solution: \qquad
b) What is the height of the firework when it explodes? Variable: \qquad Equation: \qquad

Solution: \qquad
3) If a toy rocket is launched vertically upward from ground level with an initial velocity of $\mathbf{1 2 8}$ feet per second, then its height, h after t seconds is given by the equation $h(t)=-16 t^{2}+128 t$ (if air resistance is neglected.)

Sketch the graph of the rockets' path as a function of his height over time. Label all important information as you answer each question.

a. How long will it take for the rocket to return to the ground? Variable: \qquad Equation: \qquad

Solution: \qquad
b. For how many seconds will the rocket be 112 feet above the ground? Variable: \qquad Equation: \qquad

Solution: \qquad
c. How long will it take the rocket to reach its maximum height? Variable: \qquad Equation: \qquad

Solution: \qquad
d. What is the maximum height?

Variable: \qquad Equation: \qquad

Solution: \qquad

ASSIGNMENT

1) A ball is launched directly upward at 64 feet per second (ft / s) from a platform 80 feet high.
\qquad
$\mathrm{a}=$ \qquad
$\mathrm{b}=$ \qquad
C = \qquad
a) When will the ball reach its' maximum height? Variable: \qquad Equation: \qquad

Solution: \qquad
b) What will be the ball's maximum height? Variable: \qquad Equation: \qquad

Solution: \qquad
2) Ben and Sheldon are hiking in the mountains. Ben wants to climb to a ledge that is $\mathbf{2 0} \mathbf{f t}$. above him. The height of the grappling hook he throws is given by the function $h(t)=-16 t^{2}+32 t+5$.
 \qquad
b) When will the grapping hook reach its' maximum height? Variable: \qquad Equation: \qquad

Solution: \qquad
c) Can Ben throw it high enough to reach the ledge? Variable: \qquad Equation: \qquad

Solution: \qquad
Justify your answer. \qquad
3) A tennis ball is propelled upward from the face of a racket at 40 feet per second. The racket face is $\mathbf{3}$ feet above ground when it makes contact with the ball.

$$
\begin{aligned}
& \text { Function } h(t)= \\
& a= \\
& b=\ldots
\end{aligned}
$$

a) At what time will the ball be at its highest point? Variable: \qquad Equation: \qquad Solution: \qquad
b) How high is that highest point?

Variable: \qquad Equation: \qquad

Solution: \qquad

Review:

4) Graph the following quadratic function using the axis of symmetry, vertex and intercepts.
$y=12-8 x+x^{2}$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Factored form of related function: \qquad
h) x-intercepts: \qquad
g) Sketch the graph.

5) Graph the following quadratic function using the axis of symmetry, vertex and 2 other points.
$\frac{1}{2} x^{2}-10+y=-2 x$
a) Standard Form: \qquad
b) $a=$ \qquad $b=$ \qquad and $c=$ \qquad .
c) axis of symmetry: \qquad
d) upward or downward?
e) vertex: \qquad
f) y-intercept: \qquad
g) Complete the table with additional points. (You choose the x-values.)

x	$f(x)=$	$f(x)$

When height, h, is in feet: $h(t)=-16 t^{2}+v t+c$ When height, h, is in meters: $h(t)=-4.9 t^{2}+v t+c$ t is the time in motion (in seconds) v is the initial upward velocity (in $\mathrm{ft} / \mathrm{sec}$ or $\mathrm{m} / \mathrm{sec}$) c is the initial height
12) Emily springs for a dive off the edge of a cliff 120 ft above the ocean with an initial upward velocity of $\mathbf{8 f t} / \mathrm{s}$. How long will it take the Emily to reach the water?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad
13) An object is launched from ground level directly upward at $44.1 \mathrm{~m} / \mathrm{s}$. For how long is the object at or above a height of $\mathbf{3 9 . 2}$ meters?

Variable: \qquad Diagram: \downarrow
Equation: \qquad

Solution: \qquad

