Beaumont Middle School 8th Grade, 2017-2018 Advanced Algebra I

APPLICATIONS

Steps to Graph Quadratic Functions (Parabolas)

- 1^{st} Transform the equation into standard form. $\gamma = ax^2 + bx + c$
- 2nd State what *a* = ____, *b* = ____, and *c* = ____
- 3^{nd} Find the axis of symmetry $X = \frac{-b}{2a}$

4th Remember if *a* is positive, the graph turns upward If *a* is negative, the graph turns downward

5th Find the vertex. Substitute the x-value from the axis of <u>symmetry</u> into the original equation to find the y-value. 6th The y-intercept is c.

Name

Graphing Quadratic Functions, Using the Zeroes (x-intercepts) EXAMPLES

1) $y = x^2 - 9$

a) Standard Form: _____

b) *a* = _____, *b* = _____, and *c* = _____.

- c) axis of symmetry: _____
- d) upward or downward?

e) vertex: _____

f) y-intercept: _____

g) Factored form of related function:

h) x-intercepts: _____

g) Sketch the graph

Graphing Quadratic Functions; Using a Table

EXAMPLES

Sketch each graph.

1) $y + x^2 = 8x - 4$

- c) axis of symmetry: _____
- d) upward or downward?
- e) vertex: _____
- f) y-intercept: _____

g) Complete the table with additional points. (You choose the x-values.)

x	f(x) =	f(x)

2) $-x^2 + y + 2 = -6x$

- a) Standard Form: _____
- b) *a* = ____, *b* = ____, and *c* = ____.
- c) axis of symmetry: _____
- d) upward or downward?
- e) vertex: _____
- f) y-intercept: _____
- g) Complete the table with additional points. (You choose the x-values.)

х	f(x) =	f(x)

4)
$$\frac{1}{2}x^2 + 4x = y - 1$$

b) *a* = ____, *b* = ____, and *c* = ____.

a) Standard Form: _____

- c) axis of symmetry: _____
- d) upward or downward?
- e) vertex: _____
- f) y-intercept: _____

g) Complete the table with two additional points. (You choose the x-values.)

х	f(x) =	f(x)

- a) Standard Form: _____
 - b) *a* = ____, *b* = ____, and *c* = ____.
 - c) axis of symmetry: _____
 - d) upward or downward?
 - e) vertex: _____
 - f) y-intercept: _____

g) Complete the table with two additional points. (You choose the x-values.)

х	f(x) =	f(x)

- a) Standard Form: _____
- b) *a* = ____, *b* = ____, and *c* = ____.
- c) axis of symmetry: _____
- d) upward or downward?

e) vertex: _____

f) y-intercept: _____

g) Complete the table with two additional point (You choose the x-values.)

x	f(x) =	f(x)

g) Sketch the graph. Label the axis of symmetry, vertex and intercepts

2) Graph the following quadratic function using the axis of symmetry, vertex and 2 other points.

Using Factoring to Solve P	roblems Pr	ojectiles, Finding Time
For each problem, define the variable indicated, write an equation(s), and so	-	When height, h, is in feet: $h = -16t^2 + vt + c$ When height, h, is in meters: $h = -4.9t^2 + vt + c$ t is the time in motion (in seconds) v is the initial upward velocity (in ft/sec or m/sec)
EXAMPLES		c is the initial height
1) A diver springs from the edge of a c	liff 80 ft above the oce	ean with an initial velocity of 8 ft/sec. How long will it take
the diver to reach the water?		
Variable:	Diagram: 🗸	Equation:
Solution:		
	rs per second (m/s) fro	m a 58.8-meter tall platform. When does the object strike
the ground?		
Variable:	Diagram: 🗸	Equation:

Solution: _____

3) At a pep rally, cheerleaders use a slingshot to launch small, foam basketballs into the crowd. The release point is 5 ft above the gym floor, and the balls are shot with an initial upward velocity of 52 ft/s. Suppose a ball is caught 17 ft above the floor on its way down by a student in the stands. How long is the ball in the air?

Variable:

Diagram: ↓

Equation:_____

Variable:	Diagram: \downarrow	Equation:	

Solution: _____

ASSIGNMENT

1) Bryson throws a baseball into the air with an initial velocity of 46 ft/s. He releases the ball 6 feet off of the ground. When will the ball hit the ground?

Variable:	Diagram: \downarrow	Equation:
Solution:		
2) An object is launched from ground le34.3 meters?	evel directly upward at 39.2 m/s.	For how long is the object at or above a height of
Variable:	Diagram: 🗸	Equation:

Solution: _____

3) At a pep rally, cheerleaders use a slingshot to launch t-shirts into the crowd. The release point is 5 ft above the gym floor, and the t-shirts are shot with an initial upward velocity of 36 ft/s. Suppose a t-shirt is caught 13 ft above the floor on its way down by a student in the stands. How long is the t-shirt in the air?

Variable: _____

Diagram: 🗸

Equation:_____

Solution: _____

4) A diver is standing on a platform 24 ft. above the pool. He jumps from the platform with an initial upward velocity of 8ft/s. How long will it take for him to hit the water?

Variable:	Diagram: 🗸	Equation:

Solution: _____

5) An amateur rocketry club is holding a competition. There is a cloud cover at 1470 m. If a rocket is launched with a velocity of 196 m/s, determine how long the rocket is out of sight.

Variable:	Diagram: 🗸	Equation:

Solution: _____

6) A circus acrobat is shot out of a cannon with an initial upward speed of 50 ft/s. If the acrobat leaves the cannon 4 ft above the ground, how long will it take him to reach a net that is 10 ft above the ground?

Variable: _____

Diagram: \downarrow

Equation:_____

Solution: _____

7) A trapeze artist is shot out of a cannon with an initial upward speed of 34 ft/sec. If the acrobat leaves the cannon 4 ft above the ground, how long will it take her to reach a net that is 8 ft above the round?

Variable: _____ Dia

Diagram: 🗸

Equation:_____

Solution: _____

8) An arrow is shot upward with an initial speed of 34.3 m/s. When will it be at a height of 49m?

Variable: _____

Diagram: \downarrow

Equation:_____

٠

Solution: _____

11) Graph the following quadratic function using the axis of symmetry, vertex and intercepts.

 $y = -5 + 4x + x^2$

a) Standard Form:				T	T						-	p					Ţ	T	T	Г					Ţ	Ţ		
b) <i>a</i> =, <i>b</i> =, and <i>c</i> =	H		+	+	t		F					1.	Ļ	╸		+	‡	‡	ŧ	t	F			+	+	+		
c) axis of symmetry:	Ε			Ŧ	Ŧ		E					12					+	Ŧ	Ē	E	E	E		1	Ŧ	ł		
	H		+	╞	╞							9				╡	╡	╪	╞	t	╞			\pm	╡	+		
d) upward or downward?	H		+	╞	t				4			(+	+	+	t	t				+	+	+		
e) vertex:	Ε		+	Ŧ	Ŧ	E	F		Ξ				,			+	+	Ŧ	Ŧ	E	E		-	+	Ŧ	Ŧ	-	
f) y-intercept:	Н																	+		t					╈			_
g) Factored form of related function:	H	5	-	12			9	-	6	-	3				-	3		+	6			✐	1	2	-	HE	7	-
g) Factored form of related function:	4	5		12	2	-	9	-	6	-	3	-	3						6		-	•	1	2		16		
		5		12	2		9	-	5	-	3		<u>, </u>						6			•	1	2				-
h) x-intercepts:		5					9		6		3								6				1	2				-
h) x-intercepts:		5					9		6	, 	3								6				1	2				-
h) x-intercepts:		5					9		5		3	-{ -{							6			•	1	2				-
h) x-intercepts:		5					9		c										6)	1	2				-

12) Graph the following quadratic function using the axis of symmetry, vertex and 2 other points.

$$\frac{1}{2}x^2 - 10 + y = 3x$$
a) Standard Form: _______
b) a = ____, b = ____, and c = ____.
c) axis of symmetry: ______
d) upward or downward?
e) vertex: ______
f) y-intercept: ______
g) Complete the table with additional points.
(You choose the x-values.)
$$x \quad f(x) = \qquad f(x)$$

For each problem, define the variable, draw a diagram as indicated, write an equation(s), and solve.

Projectiles, Finding Maximum Height

The **maximum height** will be at the **vertex** of the graph, where $x = \text{time and } y = \text{height. } x = \frac{-b}{2a}$ When height, h, is in feet: $h = -16t^2 + vt + c$ t is the time in motion (in seconds) v is the initial upward velocity (in ft/sec or m/sec) c is the initial height

EXAMPLES

1) Chris jumped off of a cliff with an initial velocity of 16 ft/s into the ocean in Acapulco while vacationing with some friends. The cliff was 480 ft above the ocean.

Sketch the graph of Eli's jump as a function of his height over time. Label all important information as you answer each question.

a:
b:

a) How long did it take for Eli to reach his maximum height? Variable:
Colution:

2) Some fireworks are fired vertically into the air from the g	round at an ini	itial velocity	of 80 feet per	second. When
the highest point is reached by the firework –it explodes.	Function h(t	:) =		
	a=	b =	C =	
a) After how many seconds does the firework explode? Vari				
Solution:				
b) What is the height of the firework when it explodes? Var	iable:	_ Equatio	on:	
Solution:				
3) If a toy rocket is launched vertically upward from ground its height, h after t seconds is given by the equation $h(t) = -1$				-
Sketch the graph of the rockets' path as a function of his hei answer each question.	ght over time.	. Label all in	nportant infor	mation as you
	Fu	nction h(t) =		
			b =	
a. How long will it take for the rocket to return to the ground	d? Variable: _		Equation:	
Solution:				
b. For how many seconds will the rocket be 112 feet above t	:he ground? ∨	ariable:	Equation:	
Solution:				
c. How long will it take the rocket to reach its maximum hei	ght? Variable:		Equation:	
Solution:				
d. What is the maximum height? Variable:	Equation: _			
Solution:				

16

ASSIGNMENT

	Function h(t) =		
			c =
a) When will the ball reach its' maximum height? Variable:	Equation:		
Solution:			
b) What will be the ball's maximum height? Variable: Equ	uation:		
Solution:			
2) Ben and Sheldon are hiking in the mountains. Ben wants to clin the grappling hook he throws is given by the function $h(t) = -16t$	-	20 ft. above h	im. The height of
a) From the equations, what is the initial velocity of the grappling	ho ok th at Ben throw	vs?	
b) When will the grapping hook reach its' maximum height? Varia	ble: Equatio	n:	
Solution:			
c) Can Ben throw it high enough to reach the ledge? Variable:	Equation:		
Solution: Justify your answer			
3) A tennis ball is propelled upward from the face of a racket at 40 ground when it makes contact with the ball. Function $h(t) = \frac{1}{2}$	0 feet per second. Th		is 3 feet above
a=	b = c = _		
a) At what time will the ball be at its highest point? Variable:	Equation:		
Solution:			
b) How high is that highest point? Variable:	Equation:		
Solution:			

Review:

4) Graph the following quadratic function using the axis of symmetry, vertex and intercepts.

5) Graph the following quadratic function using the axis of symmetry, vertex and 2 other points.

$$\frac{1}{2}x^2 - 10 + y = -2x$$

a) Standard Form: _____

b) *a* = _____, *b* = _____, and *c* = _____.

c) axis of symmetry: _____

d) upward or downward?

e) vertex: _____

f) y-intercept: _____

g) Complete the table with additional points. (You choose the x-values.)

x	f(x) =	f(x)

When height, h, is in feet: $h(t) = -16t^2 + vt + c$ When height, h, is in meters: $h(t) = -4.9t^2 + vt + c$ t is the time in motion (in seconds) v is the initial upward velocity (in ft/sec or m/sec) c is the initial height

12) Emily springs for a dive off the edge of a cliff 120 ft above the ocean with an initial upward velocity of 8 ft/s. How long will it take the Emily to reach the water?

 \checkmark

Variable:		Diagram:
-----------	--	----------

Equation:_____

Solution: _____

13) An object is launched from ground level directly upward at 44.1 m/s. For how long is the object at or above a height of 39.2 meters?

Variable: _____ Diagram: \downarrow

Equation:_____

Solution: _____