

Example:
A rectangle is 6 cm longer than it is wide. If the length is increased by 4 cm and the width is increased by 3 cm, the area is increased by 156 cm². Find its original dimensions.

$$Small (Purple) + 156 = Big$$

$$W(W+6) + 156 = (\omega+10)(\omega+3)$$

$$W+6 + 156 = 13\omega + 30$$

$$-6\omega$$

$$-6\omega$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

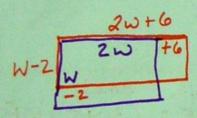
$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$


$$-30$$

$$-30$$

$$-30$$

$$-30$$

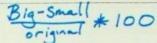
Problems for practice: $\omega = 18$ $\omega + 6 = 18 + 6 = 24$ 1) A rectangle is twice as long as it is wide. If its length is increased by 6 in. and its width is decreased by 2 in., its area is increased by 12 in². Find its avial of the problems for practice: increased by 12 in2. Find its original dimensions (old) Purple + 12 = New (orange)

(2) A rectangle is 4 m longer than it is wide. If the length is increased by 2 m and the width is increased by 1 m, the area is increased by 36 m². Find the dimensions of the original rectangle.

wing, Growing, Growing Investigation 3.2 and More Scientific Notation

Investing for the Future

yearly growth factor for our rabbit population from Investigation 3.1 was 1.8. Suppose the sulation data fit the equation $P = 100(1.8)^n$ exactly. Then its table would look like the one below.



Growth of Rabbit Population		
Ì	Time (yr)	Population
	0	100
	1	180
	2	325
	3	503

The growth factor of 1.8 is the number by which the population for year n is multiplied to get the population for the next year, n + 1.

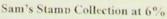
You can think of the growth factor in terms of a percent change. To find the percent change, compare the difference in population for two consecutive years, n and n + 1, with the population of year n.

• From year 0 to year 1, the percent change is $\frac{180-100}{100} = \frac{80}{100} = 80\%$.

The population of 100 rabbits in year 0 increased by 80%, resulting in 100 rabbits (80%) = 80 additional rabbits.

• From year 1 to year to the percent change is $\frac{33-180}{180} = \frac{145}{180} = 80\%$

The population of 180 rabbits in year 1 increased by 60% resulting in 180 rabbits(80%) = 144 additional rabbits.


e percent increase is called the *growth rate* In some growth situations, the growth rate is given instead of growth factor. For example, changes in the value of investments are often expressed as percents

OBLEM 3.2

hen Sam was in 7th grade, his aunt gave him a stamp collection worth \$2500. Sam considered selling the lection, but his aunt told him that, if he saved it, it would increase in value.

Sam saved the collection, and its value increased by 6% each year for several years in a row.

Make a table showing the value of the collection each year for the five years after Sam's aunt gave it to him.

Year	Value
0	\$2,500
1	2650
2	2809 1.
3	2978
4	3157
5	3,346

100% + 6% = 106% = 1.06

Look at the pattern of growth from one year to the next. Is the value growing exponentially?

Write an equation for the value v of the collection after n years. $\sqrt{=1.06 \cdot 2500}$